0000000000610954

AUTHOR

Stephanie Tomcin

Size-dependent knockdown potential of siRNA-loaded cationic nanohydrogel particles.

To overcome the poor pharmacokinetic conditions of short double-stranded RNA molecules in RNA interference therapies, cationic nanohydrogel particles can be considered as alternative safe and stable carriers for oligonucleotide delivery. For understanding key parameters during this process, two different types of well-defined cationic nanohydrogel particles were synthesized, which provided nearly identical physicochemical properties with regards to their material composition and resulting siRNA loading characteristics. Yet, according to the manufacturing process using amphiphilic reactive ester block copolymers of pentafluorophenyl methacrylate (PFPMA) and tri(ethylene glycol)methyl ether m…

research product

HPMA copolymers as surfactants in the preparation of biocompatible nanoparticles for biomedical application.

In this work we describe the application of amphiphilic N-(2-hydroxypropyl)methacrylamide (HPMA)-based copolymers as polymeric surfactants in miniemulsion techniques. HPMA-based copolymers with different ratios of HPMA (hydrophilic) to laurylmethacrylate (LMA; hydrophobic) units were synthesized by RAFT polymerization and postpolymerization modification. The amphiphilic polymers can act as detergents in both the miniemulsion polymerization of styrene and the miniemulsion process in combination with solvent evaporation, which was applied to polystyrene and polylactide. Under optimized conditions, monodisperse colloids can be prepared. The most promising results could be obtained by using the…

research product

HPMA-based block copolymers promote differential drug delivery kinetics for hydrophobic and amphiphilic molecules.

Abstract We describe a method how polymeric nanoparticles stabilized with (2-hydroxypropyl)methacrylamide (HPMA)-based block copolymers are used as drug delivery systems for a fast release of hydrophobic and a controlled release of an amphiphilic molecule. The versatile method of the miniemulsion solvent-evaporation technique was used to prepare polystyrene (PS) as well as poly-d/l-lactide (PDLLA) nanoparticles. Covalently bound or physically adsorbed fluorescent dyes labeled the particles’ core and their block copolymer corona. Confocal laser scanning microscopy (CLSM) in combination with flow cytometry measurements were applied to demonstrate the burst release of a fluorescent hydrophobic…

research product