Cerebral Dynamics during the Observation of Point-Light Displays Depicting Postural Adjustments
Objective: As highly social creatures, human beings rely part of their skills of identifying, interpreting, and predicting the actions of others on the ability of perceiving biological motion. In the present study, we aim to investigate the electroencephalographic (EEG) cerebral dynamics involved in the coding of postural control and examine whether upright stance would be codified through the activation of the temporal-parietal cortical network classically enrolled in the coding of biological motion. Design: We registered the EEG activity of 12 volunteers while they passively watched point light displays (PLD) depicting quiet stable (QB) and an unstable (UB) postural situations and their r…
Visual inference of arm movement is constrained by motor representations
International audience; Several studies support the idea that motion inference is strongly motor dependent. In the present study, we address the role of biomechanical constraints in motion prediction and how this implicit knowledge can interfere in a spatial prediction task. Right-handed (RHS) and left-handed subjects (LHS) had to estimate the final position of a horizontal arm movement in which the final part of the trajectory was hidden. Our study highlighted a direction effect: end point prediction accuracy was better to infer the final position of horizontal motion directed toward the median line of human body. This finding suggests that the spatial prediction of end point is mapped ont…