0000000000612185

AUTHOR

Jenni Raitoharju

showing 8 related works from this author

Benchmark database for fine-grained image classification of benthic macroinvertebrates

2018

Managing the water quality of freshwaters is a crucial task worldwide. One of the most used methods to biomonitor water quality is to sample benthic macroinvertebrate communities, in particular to examine the presence and proportion of certain species. This paper presents a benchmark database for automatic visual classification methods to evaluate their ability for distinguishing visually similar categories of aquatic macroinvertebrate taxa. We make publicly available a new database, containing 64 types of freshwater macroinvertebrates, ranging in number of images per category from 7 to 577. The database is divided into three datasets, varying in number of categories (64, 29, and 9 categori…

0106 biological sciencesComputer scienceta1172Sample (statistics)monitorointi02 engineering and technologyneuroverkot01 natural sciencesConvolutional neural network0202 electrical engineering electronic engineering information engineeringkonenäköfine-grained classification14. Life underwaterFine-grained classificationInvertebrateta113ta112Contextual image classificationbusiness.industry010604 marine biology & hydrobiologyDeep learningConvolutional Neural NetworksBenchmark databasedeep learningPattern recognitionDeep learningselkärangattomatvedenlaatu6. Clean waterkoneoppiminenBenthic zoneBenthic macroinvertebratesbiomonitoringSignal ProcessingBiomonitoringta1181lajinmääritys020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionArtificial intelligenceWater qualitybusinessbenthic macroinvertebrates
researchProduct

Automatic image‐based identification and biomass estimation of invertebrates

2020

Understanding how biological communities respond to environmental changes is a key challenge in ecology and ecosystem management. The apparent decline of insect populations necessitates more biomonitoring but the time-consuming sorting and expert-based identification of taxa pose strong limitations on how many insect samples can be processed. In turn, this affects the scale of efforts to map and monitor invertebrate diversity altogether. Given recent advances in computer vision, we propose to enhance the standard human expert-based identification approach involving manual sorting and identification with an automatic image-based technology. We describe a robot-enabled image-based identificat…

luokitus (toiminta)convolutional neural networkdeep learningbiodiversiteettiekosysteemit (ekologia)spidersmachine learningkoneoppiminenclassificationhyönteisethämähäkitinsectstunnistaminenbiodiversity
researchProduct

The Riverine Organism Drift Imager: A new technology to study organism drift in rivers and streams

2023

1. Drift or downstream dispersal is a fundamental process in the life cycle of many riverine organisms. In the face of rapidly declining freshwater biodiversity, there is a need to enhance our capacity to study the drift of riverine organisms, by overcoming the limitations of traditional labour-intensive sampling methods that result in data of low temporal and spatial resolution. 2. To address this need, we developed a new technology, the Riverine Organism Drift Imager (RODI), which combines in situ imaging with machine-learning classification. This technique expands on the traditional methodology by replacing the collection cup of a drift net with a camera system that continuously images r…

fishneural networkEcological Modelinghermoverkot (biologia)monitorointistreamscomputer visionriversmonitoringkoneoppiminenmachine learningbenthic invertebrateskonenäköjoetbenthic invertebrates; computer vision; fish; machine learning; monitoring; neural network; rivers; streamsEcology Evolution Behavior and SystematicskalatMethods in Ecology and Evolution
researchProduct

Automatic image-based identification and biomass estimation of invertebrates

2020

1. Understanding how biological communities respond to environmental changes is a key challenge in ecology and ecosystem management. The apparent decline of insect populations necessitates more biomonitoring but the time-consuming sorting and expert-based identification of taxa pose strong limitations on how many insect samples can be processed. In turn, this affects the scale of efforts to map and monitor invertebrate diversity altogether. Given recent advances in computer vision, we propose to enhance the standard human expert-based identification approach involving manual sorting and identification with an automatic image-based technology. 2. We describe a robot-enabled image-based ident…

FOS: Computer and information sciences0106 biological sciencesclassification (action)Computer Science - Machine Learninghahmontunnistus (tietotekniikka)Computer scienceImage qualityComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern Recognitionclassificationsmodelling (creation related to information)neuroverkot01 natural sciencesConvolutional neural networkcomputer visionMachine Learning (cs.LG)remote sensingAbundance (ecology)Statistics - Machine Learningkonenäköinsectstunnistaminenbiodiversitysystematiikka (biologia)Ecological ModelingSortingselkärangattomatneural networksmuutosjohtaminenautomated pattern recognitionIdentification (information)machine learningkoneoppiminenclassificationEcosystem managementhämähäkitrecognitionmallintaminenneural networks (information technology)Machine Learning (stat.ML)010603 evolutionary biologyspidersidentifiointilajitsystematicsluokituksetEcology Evolution Behavior and Systematicsluokitus (toiminta)tarkkuusbusiness.industry010604 marine biology & hydrobiologyDeep learningPattern recognitiontypes and speciesidentification (recognition)15. Life on land113 Computer and information sciencesecosystems (ecology)invertebratesbiodiversiteettiekosysteemit (ekologia)hyönteisetidentificationprecisionkaukokartoitusArtificial intelligencechange management (leadership)businessScale (map)
researchProduct

Evaluating the performance of artificial neural networks for the classification of freshwater benthic macroinvertebrates

2014

Abstract Macroinvertebrates form an important functional component of aquatic ecosystems. Their ability to indicate various types of anthropogenic stressors is widely recognized which has made them an integral component of freshwater biomonitoring. The use of macroinvertebrates in biomonitoring is dependent on manual taxa identification which is currently a time-consuming and cost-intensive process conducted by highly trained taxonomical experts. Automated taxa identification of macroinvertebrates is a relatively recent research development. Previous studies have displayed great potential for solutions to this demanding data mining application. In this research we have a collection of 1350 …

ta113Radial basis function networkEcologyArtificial neural networkComputer sciencebusiness.industryApplied MathematicsEcological Modelingta1172PerceptronMachine learningcomputer.software_genreBackpropagationComputer Science ApplicationsProbabilistic neural networkIdentification (information)Computational Theory and MathematicsModeling and SimulationMultilayer perceptronConjugate gradient methodta1181Artificial intelligencebusinesscomputerEcology Evolution Behavior and SystematicsEcological Informatics
researchProduct

Computer Vision on X-ray Data in Industrial Production and Security Applications: A Comprehensive Survey

2023

X-ray imaging technology has been used for decades in clinical tasks to reveal the internal condition of different organs, and in recent years, it has become more common in other areas such as industry, security, and geography. The recent development of computer vision and machine learning techniques has also made it easier to automatically process X-ray images and several machine learning-based object (anomaly) detection, classification, and segmentation methods have been recently employed in X-ray image analysis. Due to the high potential of deep learning in related image processing applications, it has been used in most of the studies. This survey reviews the recent research on using com…

FOS: Computer and information sciencesGeneral Computer ScienceComputer Vision and Pattern Recognition (cs.CV)security applicationsröntgensäteilyComputer Science - Computer Vision and Pattern RecognitionGeneral Engineeringdeep learningsyväoppiminencomputer visionX-rayindustrial applicationskonenäköGeneral Materials ScienceElectrical and Electronic Engineering
researchProduct

Automatic social distance estimation for photographic studies: Performance evaluation, test benchmark, and algorithm

2022

The social distancing regulations introduced to slow down the spread of COVID-19 virus directly affect a basic form of non-verbal communication, and there may be longer term impacts on human behavior and culture that remain to be analyzed in proxemics studies. To obtain quantitative results for such studies, large media and/or personal photo collections must be analyzed. Several social distance monitoring methods have been proposed for safety purposes, but they are not directly applicable to general photo collections with large variations in the imaging setup. In such studies, the interest shifts from safety to analyzing subtle differences in social distances. Currently, there is no suitabl…

hahmontunnistus (tietotekniikka)518 Media and communicationshuman pose estimationCOVID-19syväoppiminentest benchmark113 Computer and information sciencessocial distance estimationperformance evaluationkoneoppiminenprojektiivinen geometriaetäisyysalgoritmitproxemicskonenäköperson detectionarviointivalokuvatMachine Learning with Applications
researchProduct

Human experts vs. machines in taxa recognition

2020

The step of expert taxa recognition currently slows down the response time of many bioassessments. Shifting to quicker and cheaper state-of-the-art machine learning approaches is still met with expert scepticism towards the ability and logic of machines. In our study, we investigate both the differences in accuracy and in the identification logic of taxonomic experts and machines. We propose a systematic approach utilizing deep Convolutional Neural Nets with the transfer learning paradigm and extensively evaluate it over a multi-pose taxonomic dataset with hierarchical labels specifically created for this comparison. We also study the prediction accuracy on different ranks of taxonomic hier…

FOS: Computer and information sciencesComputer Science - Machine Learninghahmontunnistus (tietotekniikka)Computer scienceClassification approachTaxonomic expert02 engineering and technologyneuroverkotcomputer.software_genreConvolutional neural networkQuantitative Biology - Quantitative MethodsField (computer science)Machine Learning (cs.LG)Machine learning approachesStatistics - Machine LearningAutomated approachDeep neural networks0202 electrical engineering electronic engineering information engineeringTaxonomic rankQuantitative Methods (q-bio.QM)Classification (of information)Artificial neural networksystematiikka (biologia)Prediction accuracyIdentification (information)koneoppiminenMulti-image dataBenchmark (computing)020201 artificial intelligence & image processingConvolutional neural networksComputer Vision and Pattern RecognitionClassification errorsMachine Learning (stat.ML)Machine learningState of the artElectrical and Electronic EngineeringTaxonomySupport vector machinesLearning systemsbusiness.industryNode (networking)020206 networking & telecommunicationsComputer circuitsHierarchical classificationConvolutionSupport vector machineFOS: Biological sciencesTaxonomic hierarchySignal ProcessingBiomonitoringBenchmark datasetsArtificial intelligencebusinesscomputertaksonitSoftware
researchProduct