6533b86efe1ef96bd12cca0f

RESEARCH PRODUCT

Human experts vs. machines in taxa recognition

Johanna ÄRjeSalme KärkkäinenMoncef GabboujSerkan KiranyazVille TirronenAlexandros IosifidisJenni RaitoharjuKristian Meissner

subject

FOS: Computer and information sciencesComputer Science - Machine Learninghahmontunnistus (tietotekniikka)Computer scienceClassification approachTaxonomic expert02 engineering and technologyneuroverkotcomputer.software_genreConvolutional neural networkQuantitative Biology - Quantitative MethodsField (computer science)Machine Learning (cs.LG)Machine learning approachesStatistics - Machine LearningAutomated approachDeep neural networks0202 electrical engineering electronic engineering information engineeringTaxonomic rankQuantitative Methods (q-bio.QM)Classification (of information)Artificial neural networksystematiikka (biologia)Prediction accuracyIdentification (information)koneoppiminenMulti-image dataBenchmark (computing)020201 artificial intelligence & image processingConvolutional neural networksComputer Vision and Pattern RecognitionClassification errorsMachine Learning (stat.ML)Machine learningState of the artElectrical and Electronic EngineeringTaxonomySupport vector machinesLearning systemsbusiness.industryNode (networking)020206 networking & telecommunicationsComputer circuitsHierarchical classificationConvolutionSupport vector machineFOS: Biological sciencesTaxonomic hierarchySignal ProcessingBiomonitoringBenchmark datasetsArtificial intelligencebusinesscomputertaksonitSoftware

description

The step of expert taxa recognition currently slows down the response time of many bioassessments. Shifting to quicker and cheaper state-of-the-art machine learning approaches is still met with expert scepticism towards the ability and logic of machines. In our study, we investigate both the differences in accuracy and in the identification logic of taxonomic experts and machines. We propose a systematic approach utilizing deep Convolutional Neural Nets with the transfer learning paradigm and extensively evaluate it over a multi-pose taxonomic dataset with hierarchical labels specifically created for this comparison. We also study the prediction accuracy on different ranks of taxonomic hierarchy in detail. We used support vector machine classifier as a benchmark. Our results revealed that human experts using actual specimens yield the lowest classification error ($\overline{CE}=6.1\%$). However, a much faster, automated approach using deep Convolutional Neural Nets comes close to human accuracy ($\overline{CE}=11.4\%$) when a typical flat classification approach is used. Contrary to previous findings in the literature, we find that for machines following a typical flat classification approach commonly used in machine learning performs better than forcing machines to adopt a hierarchical, local per parent node approach used by human taxonomic experts ($\overline{CE}=13.8\%$). Finally, we publicly share our unique dataset to serve as a public benchmark dataset in this field.

10.1016/j.image.2020.115917https://pure.au.dk/portal/da/publications/human-experts-vs-machines-in-taxa-recognition(89f9f4c1-f30f-43ac-afd3-2d337c0c8ed9).html