0000000000612915
AUTHOR
Magalie Leveugle
High-density genotyping of pea and faba bean diversity panels using exome capture
International audience; Genome-wide association studies (GWAS) represent a powerful tool to decipher the geneticdeterminism of complex traits in crop plants and to identify responsible genes. As GWAS require large diversitypanels segregating for the traits of interest, one faba bean and three pea collections were constituted toaddress different questions in the PeaMUST project. The faba bean panel comprises 248 accessions comingfrom five continents and displaying the phenotypic diversity of the species. The first pea collection includes239 accessions that represent the species diversity for aerial and root architecture and for biotic and abioticstress responses. The second and third pea pan…
Plant resistance and architecture for protection of pulses against pathogens
Prod 2019-213c BAP GEAPSI INRA; National audience
The Pea genome and after...
The Pea genome and after …
Having a genome sequence available is a critical step towards unravelling functional diversity andestablishing genome-enabled breeding. The recently generated pea genome sequence represents a great toolfor genomicists, geneticists and breeders not only for the pea community but also for legume research. In thegenome project, re-sequencing data revealed the considerable diversity present in the Pisum genus. In thePeaMUST project, an unprecedented effort was made to genotype large pea collections using the exomecapture technology. This high-density SNP data was exploited in genome-wide association studies (GWAS) ona large number of traits related to yield, as well as response to biotic and ab…
Pea Genomics : What Else ?
BAP GEAPSIBAPGEAPSI; Legume use in arable rotations provides several significant ecological services that can help to meet the challenge of delivering high quality food in an environmentally sustainable manner. Among legumes, pea has long been a model species for geneticists. But despite its major role in the discovery of the laws of genetics by Mendel, the keys to decipher the impressive phenotypic diversity of the species have been lacking until recently. Under the impetus of large national and international programs, and driven by innovations in informatics and biotechnology, useful genomic resources are now available in pea. High precision mapping of the pea genome, an atlas of the expr…
Bruchid resistance in pulses
Prod 2019-213a BAP GEAPSI INRA; National audience
Complementary approaches towards the discovery of genes controlling yield in pea
International audience; Pea is one of the most important grain legumes in the world. Improving pea yield is a critical breedingtarget in the current context of consumers’ increasing demand for plant proteins for food and feed. Becauseof its polygenic nature and the impact of the environment, breeding for higher yield is challenging. Weinvestigated the genetic determinism of yield (SW), seed number (SN) and thousand seed weight (TSW) usingboth linkage and linkage-disequilibrium approaches.Nine interconnected mapping populations, representing a total of 1,213 recombinant inbred lineswere phenotyped for SW, SN and TSW in six different field environments. These lines were genotyped usingthe Gen…
The pea genome and beyond
International audience; The recently generated pea genome sequence is a significant step for the pea research community towards unravelling functional diversity and establishing genome-enabled breeding. Re-sequencing data reveal the considerable diversity present in the Pisum genus. High-throughput genotyping is now available to explore large collections using the exome capture technology in genome-wide association studies (GWAS) or tackle map-based QTL cloning. Furthermore, genomic selection strategies have been developed in order to tackle complex traits such as yield regularity and improve selection efficiency. We will present snapshots of these results and discuss potential transfer of …
PeaMUST (2012-2019) – Pea Multi-Stress adaptation and biological regulations for yield improvement and stability
BAP GEAPSI INRA; International audience; PeaMUST (2012-2019) is a large French national project whose objective is to develop novel pea varieties and optimize plant-symbiotic interactions for stabilized seed yield and quality, in the context of climate change and pesticide reduction. With the involvement of 28 partners from the public and private sectors, it will take advantage of NGS sequencing, genotyping and phenotyping technologies, to tackle the challenge of multiple stresses that penalize the performance of the pea crop.