0000000000612977

AUTHOR

Robert Henning

showing 7 related works from this author

Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser

2014

We describe a method to measure ultrafast protein structural changes using time-resolved wide-angle X-ray scattering at an X-ray free-electron laser. We demonstrated this approach using multiphoton excitation of the Blastochloris viridis photosynthetic reaction center, observing an ultrafast global conformational change that arises within picoseconds and precedes the propagation of heat through the protein. This provides direct structural evidence for a 'protein quake': the hypothesis that proteins rapidly dissipate energy through quake-like structural motions. peerReviewed

Photosynthetic reaction centreMaterials scienceProtein ConformationPhysics::OpticsPhycobiliproteinsfrequency vibrational-modesRadiation DosageBiochemistryMolecular physicsArticlelaw.inventionProtein structureX-Ray Diffractionlawddc:570Scattering Small AngleMolecular Biologyta116Quantitative Biology::BiomoleculesScatteringLasersMolecular biophysicsFree-electron laserCell BiologyLaserstructural dynamicsEnergy TransferPicosecondBiophysicsUltrashort pulseBiotechnologyNature methods
researchProduct

Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein

2016

Many biological processes depend on detecting and responding to light. The response is often mediated by a structural change in a protein that begins when absorption of a photon causes isomerization of a chromophore bound to the protein. Pande et al. used x-ray pulses emitted by a free electron laser source to conduct time-resolved serial femtosecond crystallography in the time range of 100 fs to 3 ms. This allowed for the real-time tracking of the trans-cis isomerization of the chromophore in photoactive yellow protein and the associated structural changes in the protein.Science, this issue p. 725A variety of organisms have evolved mechanisms to detect and respond to light, in which the re…

0301 basic medicinePhotoreceptorsTime FactorsPhotoisomerizationLightProtein ConformationPhotochemistryPhotoreceptors MicrobialMYOGLOBINProtein structureMicrobialX-RAY-DIFFRACTIONPHOTOISOMERIZATIONMOTIONSchromophoresta116MultidisciplinarySPECTROSCOPYCrystallographyChemistryPhotochemical ProcessesTime resolved crystallographyTIMEMultidisciplinary SciencesPicosecondFemtosecondphotoactive proteinsScience & Technology - Other Topicsddc:500IsomerizationStereochemistryGeneral Science & TechnologyConjugated systemArticle03 medical and health sciencesBacterial ProteinsIsomerismEXCITATIONx-ray crystallographyPhotonsScience & TechnologyPHOTOCYCLEta114CHROMOPHOREta1182PATHWAYSChromophore030104 developmental biologyfree-electron laserssense organstrans-cis isomerization
researchProduct

Structural photoactivation of a full-length bacterial phytochrome

2016

Time-resolved x-ray solution scattering reveals the conformational signaling mechanism of a bacterial phytochrome.

Models Molecular0301 basic medicineProtein ConformationAstrophysics::High Energy Astrophysical Phenomena116 Chemical sciencesPhotoreceptors MicrobialphytochromesQuantitative Biology::Cell BehaviorStructure-Activity Relationship03 medical and health sciencesProtein structureBacterial ProteinsStructural BiologyDeinococcus radioduransBotanyResearch Articles219 Environmental biotechnologyMultidisciplinarybiologyPhytochromeHistidine kinaseta1182SciAdv r-articlesDeinococcus radioduransChromophorebiology.organism_classificationKineticsMicrosecond030104 developmental biologyStructural changephotoactivationBiophysicsPhytochromeFunction (biology)Research Article
researchProduct

Signal amplification and transduction in phytochrome photosensors

2014

[Introduction] Page 2 of 20 Sensory proteins must relay structural signals from the sensory site over large distances to regulatory output domains. Phytochromes are a major family of red-light sensing kinases that control diverse cell ular functions in plants, bacteria, and fungi. 1-9 Bacterial phytochro mes consist of a photosensory core and a C-te rminal regulatory domain. 10,11 Structures of photosensory cores are reported in the resting state 12-18 and conformational responses to light activat ion have been proposed in the vicinity of the chromophore. 19-23 However, the structure of the signalling state and the mechanism of downstream signal re lay through the photosensory core remain e…

Models MolecularLight Signal TransductionProtein ConformationCrystallography X-RayArticleProtein structureBacterial Proteinsmolecular biophysicsDeinococcusBinding siteCalcium signalingBinding SitesMultidisciplinarybiokemiabiologyPhytochrometa1182Deinococcus radioduransChromophorebiology.organism_classificationBiochemistryBiophysicsDeinococcusPhytochromeTransduction (physiology)röntgenkristallografiaNature
researchProduct

Room temperature crystal structure of the fast switching M159T mutant of the fluorescent protein dronpa

2015

The fluorescent protein Dronpa undergoes reversible photoswitching reactions between the bright ‘on’ and dark ‘off’ states via photoisomerisation and proton transfer reactions. We report the room temperature crystal structure of the fast switching Met159Thr mutant of Dronpa at 2.0 A resolution in the bright on state. Structural differences with the wild type include shifted backbone positions of strand β8 containing Thr159 as well as an altered A-C dimer interface involving strands β7, β8, β10, and β11. The Met159Thr mutation increases the cavity volume for the p-hydroxybenzylidene-imidazolinone chromophore as a result of both the side chain difference and the backbone positional difference…

DimerMutantWild typeCrystal structureChromophorePhotochemistryBiochemistrychemistry.chemical_compoundDronpaMolecular dynamicsCrystallographychemistryStructural BiologySide chainMolecular BiologyProteins: Structure, Function, and Bioinformatics
researchProduct

Photoactivation of Drosophila melanogaster cryptochrome through sequential conformational transitions

2019

Time-resolved x-ray scattering reveals light-induced signal transduction in insect cryptochromes.

LightProtein ConformationSpectrum AnalysisbanaanikärpänenSciAdv r-articlesfotobiologiaHydrogen BondingHydrogen-Ion ConcentrationMolecular Dynamics SimulationBiochemistryModels BiologicalCryptochromesStructure-Activity RelationshipDrosophila melanogasterCatalytic DomainAnimalsproteiinitResearch ArticlesvuorokausirytmiResearch ArticleSignal TransductionScience Advances
researchProduct

Sequential conformational transitions and α-helical supercoiling regulate a sensor histidine kinase

2017

Sensor histidine kinases are central to sensing in bacteria and in plants. They usually contain sensor, linker, and kinase modules and the structure of many of these components is known. However, it is unclear how the kinase module is structurally regulated. Here, we use nano- to millisecond time-resolved X-ray scattering to visualize the solution structural changes that occur when the light-sensitive model histidine kinase YF1 is activated by blue light. We find that the coiled coil linker and the attached histidine kinase domains undergo a left handed rotation within microseconds. In a much slower second step, the kinase domains rearrange internally. This structural mechanism presents a t…

Models MolecularkinaasitentsyymitHistidine KinaseLightProtein ConformationScienceQCrystallography X-RayArticleProtein Structure SecondaryaktivointiBacterial ProteinsProtein DomainsX-Ray DiffractionphotoactivationScattering Small AngleNanotechnologysensor histidine kinasesNature Communications
researchProduct