0000000000614042
AUTHOR
P. Myllyperkiö
A study of VUV emission and the extracted electron-ion ratio in hydrogen and deuterium plasmas of a filament-driven H−/D− ion source
Vacuum ultraviolet (VUV) emission diagnostics for studying differences of electron impact processes in hydrogen and deuterium plasmas are presented. The method is applied to study a filament driven multicusp arc discharge negative ion source by comparing the VUV-emission intensities of different emission bands and extracted currents of H−/D− ions and electrons. It was found that the ratio of coextracted electrons to extracted ions is four times higher for deuterium than for hydrogen. No significant differences of the VUV-spectra or volumetric rates of ionization, excitation, production of high vibrational states, and dissociation were found between the plasmas of the two isotopes. The volum…
A study of VUV emission and the extracted electron-ion ratio in hydrogen and deuterium plasmas of a filament-driven H−/D− ion source
Vacuum ultraviolet (VUV) emission diagnostics for studying differences of electron impact processes in hydrogen and deuterium plasmas are presented. The method is applied to study a filament driven multicusp arc discharge negative ion source by comparing the VUV-emission intensities of different emission bands and extracted currents of H−/D− ions and electrons. It was found that the ratio of coextracted electrons to extracted ions is four times higher for deuterium than for hydrogen. No significant differences of the VUV-spectra or volumetric rates of ionization, excitation, production of high vibrational states, and dissociation were found between the plasmas of the two isotopes. The volum…
VUV irradiance measurement of a 2.45 GHz microwave-driven hydrogen discharge
Absolute values of VUV-emission of a 2.45 GHz microwave-driven hydrogen discharge are reported. The measurements were performed with a robust and straightforward method based on a photodiode and optical filters. It was found that the volumetric photon emission rate in the VUV-range (80-250 nm) is $10^{16}$-$10^{17}$ 1/cm$^3$s, which corresponds to approximately 8% dissipation of injected microwave power by VUV photon emission. The volumetric emission of characteristic emission bands was utilized to diagnostics of molecular plasma processes including volumetric rates of ionization, dissociation and excitation to high vibrational levels and metastable states. The estimated reaction rates impl…