0000000000614106
AUTHOR
I. Fuentes-guridi
Geometric phase in open systems.
We calculate the geometric phase associated to the evolution of a system subjected to decoherence through a quantum-jump approach. The method is general and can be applied to many different physical systems. As examples, two main source of decoherence are considered: dephasing and spontaneous decay. We show that the geometric phase is completely insensitive to the former, i.e. it is independent of the number of jumps determined by the dephasing operator.
Vacuum induced spin-1/2 Berry's phase.
We calculate the Berry phase of a spin-1/2 particle in a magnetic field considering the quantum nature of the field. The phase reduces to the standard Berry phase in the semiclassical limit and eigenstate of the particle acquires a phase in the vacuum. We also show how to generate a vacuum induced Berry phase considering two quantized modes of the field which has a interesting physical interpretation.
Spin-1/2 geometric phase driven by decohering quantum fields
We calculate the geometric phase of a spin-1/2 system driven by a one and two mode quantum field subject to decoherence. Using the quantum jump approach, we show that the corrections to the phase in the no-jump trajectory are different when considering an adiabatic and non-adiabatic evolution. We discuss the implications of our results from both the fundamental as well as quantum computational perspective.