0000000000614204
AUTHOR
Mateusz Wielopolski
Synthesis and optoelectronic properties of chemically modified bi-fluorenylidenes
The development of new light harvesting materials is a key issue for the progress of the research on organic & hybrid photovoltaics. Here, we report a new class of organic sensitizers based on the bi-fluorenylidene moiety as π-linker within the donor–π-linker–acceptor (D–π–A) scheme. The new dyes are endowed with electron donor and electron acceptor units at strategic positions in order to improve their electronic and light-harvesting properties. The comprehensive study of these compounds through the use of different experimental and theoretical techniques, provides an in-depth understanding of their electronic and photophysical properties, and reveal their interest as photovoltaic material…
Diskrete supramolekulare Donor-Akzeptor-Komplexe
Discrete supramolecular donor-acceptor complexes
The renewed interest in noncovalently associating electroactive molecules arises in part from the quest for new organic materials that convert solar energy into electrical/ chemical equivalents. In this context, the formation of charge-separated states is a key prerequisite. Charge-transfer events triggered by light have been studied in supramolecular donor–acceptor systems based on hydrogen bonds and coordinative metal bonds. Although many of the most widely utilized electroactive fragments feature large pconjugated surfaces, to date the use of p–p aromatic interactions has mainly been limited to the construction of semi-infinite ensembles of chromophores either to achieve charge transport…