0000000000614210
AUTHOR
Klaas Giesbertz
Natural occupation numbers: When do they vanish?
The non-vanishing of the natural orbital (NO) occupation numbers of the one-particle density matrix of many-body systems has important consequences for the existence of a density matrix-potential mapping for nonlocal potentials in reduced density matrix functional theory and for the validity of the extended Koopmans’ theorem. On the basis of Weyl’s theorem we give a connection between the differentiability properties of the ground state wavefunction and the rate at which the natural occupations approach zero when ordered as a descending series. We show, in particular, that the presence of a Coulomb cusp in the wavefunction leads, in general, to a power law decay of the natural occupations, …
The strictly-correlated electron functional for spherically symmetric systems revisited
The strong-interaction limit of the Hohenberg-Kohn functional defines a multimarginal optimal transport problem with Coulomb cost. From physical arguments, the solution of this limit is expected to yield strictly-correlated particle positions, related to each other by co-motion functions (or optimal maps), but the existence of such a deterministic solution in the general three-dimensional case is still an open question. A conjecture for the co-motion functions for radially symmetric densities was presented in Phys.~Rev.~A {\bf 75}, 042511 (2007), and later used to build approximate exchange-correlation functionals for electrons confined in low-density quantum dots. Colombo and Stra [Math.~M…
Long-range interactions and the sign of natural amplitudes in two-electron systems
In singlet two-electron systems, the natural occupation numbers of the one-particle reduced density matrix are given as squares of the natural amplitudes which are defined as the expansion coefficients of the two-electron wave function in a natural orbital basis. In this work, we relate the sign of the natural amplitudes to the nature of the two-body interaction. We show that long-range Coulombtype interactions are responsible for the appearance of positive amplitudes and give both analytical and numerical examples that illustrate how the long-distance structure of the wave function affects these amplitudes. We further demonstrate that the amplitudes show an avoided crossing behavior as fun…