0000000000614695

AUTHOR

E. D'humières

Particle energization in colliding subcritical collisionless shocks investigated in the laboratory

Context. Colliding collisionless shocks appear across a broad variety of astrophysical phenomena and are thought to be possible sources of particle acceleration in the Universe. Aims. The main goal of our experimental and computational work is to understand the effect of the interpenetration between two subcritical collisionless shocks on particle energization. Methods. To investigate the detailed dynamics of this phenomenon, we performed a dedicated laboratory experiment. We generated two counter-streaming subcritical collisionless magnetized shocks by irradiating two Teflon (C2F4) targets with 100 J, 1 ns laser beams on the LULI2000 laser facility. The interaction region between the plasm…

research product

Investigating particle acceleration dynamics in interpenetrating magnetized collisionless super-critical shocks

Colliding collisionless shocks appear in a great variety of astrophysical phenomena and are thought to be possible sources of particle acceleration in the Universe. We have previously investigated particle acceleration induced by single super-critical shocks (whose magnetosonic Mach number is higher than the critical value of 2.7) (Yao et al., Nat. Phys., vol. 17, issue 10, 2021, pp. 1177–1182; Yao et al., Matter Radiat. Extrem., vol. 7, issue 1, 2022, 014402), as well as the collision of two sub-critical shocks (Fazzini et al., Astron. Astrophys., vol. 665, 2022, A87). Here, we propose to make measurements of accelerated particles from interpenetrating super-critical shocks to observe the …

research product