0000000000614742

AUTHOR

Michel Van Garrel

0000-0003-3342-8575

Local Gromov-Witten invariants are log invariants

We prove a simple equivalence between the virtual count of rational curves in the total space of an anti-nef line bundle and the virtual count of rational curves maximally tangent to a smooth section of the dual line bundle. We conjecture a generalization to direct sums of line bundles.

research product

Enumerative aspects of the Gross-Siebert program

We present enumerative aspects of the Gross-Siebert program in this introductory survey. After sketching the program's main themes and goals, we review the basic definitions and results of logarithmic and tropical geometry. We give examples and a proof for counting algebraic curves via tropical curves. To illustrate an application of tropical geometry and the Gross-Siebert program to mirror symmetry, we discuss the mirror symmetry of the projective plane.

research product

Logarithmic Enumerative Geometry and Mirror Symmetry

research product

Enumerative Aspects of the Gross-Siebert Program

For the last decade, Mark Gross and Bernd Siebert have worked with a number of collaborators to push forward a program whose aim is an understanding of mirror symmetry. In this chapter, we’ll present certain elements of the “Gross-Siebert” program. We begin by sketching its main themes and goals. Next, we review the basic definitions and results of two main tools of the program, logarithmic and tropical geometry. These tools are then used to give tropical interpretations of certain enumerative invariants. We study in detail the tropical pencil of elliptic curves in a toric del Pezzo surface. We move on to a basic illustration of mirror symmetry, Gross’s tropical construction for \(\mathbb{P…

research product