Alteration of a Cry1A Shared Binding Site in a Cry1Ab-Selected Colony of Ostrinia furnacalis
The Asian corn borer, Ostrinia furnacalis (Guenée, 1854), is a highly damaging pest in Asia and the Pacific islands, and larvae feed mainly from corn crops. To determine the suitability of Bt-corn technology for the future control of this pest, understanding the potential to develop resistance to Cry1Ab and the basis of cross-resistance to other Cry1 proteins is of great interest. Here, we have explored the binding of Cry1A proteins to brush border membrane vesicles from two O. furnacalis colonies, one susceptible (ACB-BtS) and one laboratory-selected with Cry1Ab (ACB-AbR). The insects developed resistance to Cry1Ab and showed cross-resistance to Cry1Aa, Cry1Ac, and Cry1F. Binding assays wi…
Response Mechanisms of Invertebrates to Bacillus thuringiensis and Its Pesticidal Proteins
SUMMARY Extensive use of chemical insecticides adversely affects both environment and human health. One of the most popular biological pest control alternatives is bioinsecticides based on Bacillus thuringiensis. This entomopathogenic bacterium produces different protein types which are toxic to several insect, mite, and nematode species. Currently, insecticidal proteins belonging to the Cry and Vip3 groups are widely used to control insect pests both in formulated sprays and in transgenic crops. However, the benefits of B. thuringiensis-based products are threatened by insect resistance evolution. Numerous studies have highlighted that mutations in genes coding for surrogate receptors are …
Mpp23Aa/Xpp37Aa Insecticidal Proteins from Bacillus thuringiensis (Bacillales: Bacillaceae) Are Highly Toxic to Anthonomus grandis (Coleoptera: Curculionidae) Larvae
The beetle Anthonomus grandis Boheman, 1843, is the main cotton pest, causing enormous losses in cotton. The breeding of genetically modified plants with A. grandis resistance is seen as an important control strategy. However, the identification of molecules with high toxicity to this insect remains a challenge. The susceptibility of A. grandis larvae to proteins (Cry1Ba, Cry7Ab, and Mpp23Aa/Xpp37Aa) from Bacillus thuringiensis Berliner, 1915, with toxicity reported against Coleopteran, has been evaluated. The ingestion of different protein concentrations (which were incorporated into an artificial diet) by the larvae was tested in the laboratory, and mortality was evaluated after one week.…
Bacillus thuringiensis Toxins: Functional Characterization and Mechanism of Action
Bacillus thuringiensis (Bt)-based products are the most successful microbial insecticides to date. This entomopathogenic bacterium produces different kinds of proteins whose specific toxicity has been shown against a wide range of insect orders, nematodes, mites, protozoa, and human cancer cells. Some of these proteins are accumulated in parasporal crystals during the sporulation phase (Cry and Cyt proteins), whereas other proteins are secreted in the vegetative phase of growth (Vip and Sip toxins). Currently, insecticidal proteins belonging to different groups (Cry and Vip3 proteins) are widely used to control insect pests and vectors both in formulated sprays and in transgenic crops (the …