0000000000615228

AUTHOR

Francesca D'antona

The Role Of General Relativity in the Evolution of Low-Mass X-ray Binaries

We study the evolution of Low Mass X-ray Binaries (LMXBs) and of millisecond binary radio pulsars (MSPs), with numerical simulations that keep into account the evolution of the companion, of the binary system and of the neutron star. According to general relativity, when energy is released, the system loses gravitational mass. Moreover, the neutron star can collapse to a black hole if its mass exceeds a critical limit, that depends on the equation of state. These facts have some interesting consequences: 1) In a MSP the mass-energy is lost with a specific angular momentum that is smaller than the one of the system, resulting in a positive contribution to the orbital period derivative. If th…

research product

The near-IR counterpart of IGR J17480-2446 in Terzan 5

Some globular clusters in our Galaxy are noticeably rich in low-mass X-ray binaries. Terzan 5 has the richest population among globular clusters of X- and radio-pulsars and low-mass X-ray binaries. The detection and study of optical/IR counterparts of low-mass X-ray binaries is fundamental to characterizing both the low-mass donor in the binary system and investigating the mechanisms of the formation and evolution of this class of objects. We aim at identifying the near-IR counterpart of the 11 Hz pulsar IGRJ17480-2446 discovered in Terzan 5. Adaptive optics (AO) systems represent the only possibility for studying the very dense environment of GC cores from the ground. We carried out observ…

research product

The optical counterpart to SAX J1808.4-3658 in quiescence: Evidence of an active radio pulsar?

The optical counterpart of the binary millisecond X-ray pulsar SAX J1808.4-3658 during quiescence was detected at V = 21.5 mag by Homer et al. (2001). This star shows a 6% semi-amplitude sinusoidal modulation of its flux at the orbital period of the system. It was proposed that the modulation arises from X-ray irradiation of the intrinsically faint companion by a remnant accretion disk, and that the bulk of the optical emission arises from viscous dissipation in the disk. The serious difficulty in this scenario lies in the estimate of the irradiating luminosity required to match the observational data, that is a factor 10-50 higher than the quiescent X-ray luminosity of this source. To over…

research product