0000000000615843

AUTHOR

Carla Puglia

showing 2 related works from this author

Grafting, self-organization and reactivity of double-decker rare-earth phthalocyanine

2019

Unveiling the interplay of semiconducting organic molecules with their environment, such as inorganic materials or atmospheric gas, is the first step to designing hybrid devices with tailored optical, electronic or magnetic properties. The present article focuses on a double-decker lutetium phthalocyanine known as an intrinsic semiconducting molecule, holding a Lu ion in its center, sandwiched between two phthalocyanine rings. Carrying out experimental investigations by means of electron spectroscopies, X-ray diffraction and scanning probe microscopies together with advanced ab initio computations, allows us to unveil how this molecule interacts with weakly or highly reactive surfaces. Our…

Rare earthSTM02 engineering and technology010402 general chemistryPhotochemistryDFT01 natural sciencesOrganic moleculesNEXAFSchemistry.chemical_compoundX-ray photoelectron spectroscopyXPSReactivity (chemistry)LuPc2ChemistryGLXDGeneral ChemistryCondensed Matter Physics021001 nanoscience & nanotechnologyGraftingXANES0104 chemical sciencesPhthalocyanine0210 nano-technologyDen kondenserade materiens fysikDouble deckerJournal of Porphyrins and Phthalocyanines
researchProduct

When the Grafting of Double Decker Phthalocyanines on Si(100)-2 × 1 Partly Affects the Molecular Electronic Structure

2016

International audience; A combined X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), and density functional theory (DFT) study has been performed to characterize the adsorbate interaction of lutetium biphthalocyanine (LuPc2) molecules on the Si(100)-2 × 1 surface. Large molecule–substrate adsorption energies are computed and are found to compete with the molecule–molecule interactions of the double decker molecules. A particularly good matching between STM images and computed ones confirms the deformation of the molecule upon the absorption process. The comparison between DFT calculations and XP spectra reveals that the electronic distribution in the two plateaus …

lutetium bi-phthalocyanineSiliconXASAtom and Molecular Physics and OpticsSTMAnalytical chemistrychemistry.chemical_element02 engineering and technology010402 general chemistryDFT[ CHIM ] Chemical Sciences01 natural sciencesSi(100)law.inventionAdsorptionX-ray photoelectron spectroscopyscanning tunneling microscopelawbasis-setXPS[CHIM]Chemical SciencessurfaceMoleculePhysical and Theoretical ChemistryBasis setmetal-free phthalocyaninefield-effect transistorsPhthalocyaninebis-phthalocyanine021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialstotal-energy calculationsGeneral EnergyElectronic Structurechemistrysi(001)Chemical physicsthin-filmsaugmented-wave methodAtom- och molekylfysik och optikDensity functional theoryScanning tunneling microscopeAbsorption (chemistry)0210 nano-technologyThe Journal of Physical Chemistry C
researchProduct