0000000000615924
AUTHOR
Jan-eric Daum
Running Immirzi Parameter and Asymptotic Safety
We explore the renormalization group (RG) properties of quantum gravity, using the vielbein and the spin connection as the fundamental field variables. We require the effective action to be invariant under the semidirect product of spacetime diffeomorphisms and local frame rotations. Starting from the corresponding functional integral we review the construction of an appropriate theory space and an exact funtional RG equation operating on it. We then solve this equation on a truncated space defined by a three parameter family of Holst-type actions which involve a running Immirzi parameter. We find evidence for the existence of an asymptotically safe fundamental theory. It is probably inequi…
Einstein-Cartan gravity, Asymptotic Safety, and the running Immirzi parameter
In this paper we analyze the functional renormalization group flow of quantum gravity on the Einstein-Cartan theory space. The latter consists of all action functionals depending on the spin connection and the vielbein field (co-frame) which are invariant under both spacetime diffeomorphisms and local frame rotations. In the first part of the paper we develop a general methodology and corresponding calculational tools which can be used to analyze the flow equation for the pertinent effective average action for any truncation of this theory space. In the second part we apply it to a specific three-dimensional truncated theory space which is parametrized by Newton's constant, the cosmological…