0000000000615932
AUTHOR
Martin Hyland
Wellfounded Trees and Dependent Polynomial Functors
We set out to study the consequences of the assumption of types of wellfounded trees in dependent type theories. We do so by in- vestigating the categorical notion of wellfounded tree introduced in [16]. Our main result shows that wellfounded trees allow us to define initial algebras for a wide class of endofunctors on locally cartesian closed cat- egories.
The cartesian closed bicategory of generalised species of structures
AbstractThe concept of generalised species of structures between small categories and, correspondingly, that of generalised analytic functor between presheaf categories are introduced. An operation of substitution for generalised species, which is the counterpart to the composition of generalised analytic functors, is also put forward. These definitions encompass most notions of combinatorial species considered in the literature — including of course Joyal's original notion — together with their associated substitution operation. Our first main result exhibits the substitution calculus of generalised species as arising from a Kleisli bicategory for a pseudo-comonad on profunctors. Our secon…