0000000000617507

AUTHOR

Stéphane Mathis

showing 3 related works from this author

Sensory neuropathy in progressive motor neuronopathy(pmn)mice is associated with defects in microtubule polymerization and axonal transport

2016

Motor neuron diseases such as amyotrophic lateral sclerosis (ALS) are now recognized as multi-system disorders also involving various non-motor neuronal cell types. The precise extent and mechanistic basis of non-motor neuron damage in human ALS and ALS animal models remain however unclear. To address this, we here studied progressive motor neuronopathy (pmn) mice carrying a missense loss-of-function mutation in tubulin binding cofactor E (TBCE). These mice manifest a particularly aggressive form of motor axon dying back and display a microtubule loss, similar to that induced by human ALS-linked TUBA4A mutations. Using whole nerve confocal imaging of pmn × thy1.2-YFP16 fluorescent reporter …

0301 basic medicineGeneral NeuroscienceMotor neuronBiologymedicine.disease3. Good healthPathology and Forensic MedicineMicrotubule polymerizationTubulin binding03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structurenervous systemDorsal root ganglionmedicineAxoplasmic transportNeurology (clinical)NeuronAxonAmyotrophic lateral sclerosisNeuroscience030217 neurology & neurosurgeryBrain Pathology
researchProduct

Low-frequency internal waves in magnetized rotating stellar radiation zones

2012

Context. With the progress of observational constraints on dynamical processes in stars, it becomes necessary to understand the angular momentum and the rotation profile history. In this context, internal waves constitute an efficient transport mechanism over long distances in stellar radiation zones. Indeed, they could be one of the mechanisms responsible for the quasi-flat rotation profile of the solar radiative region up to 0.2 R ⊙ .Aims. Angular momentum transport induced by internal waves depends on the properties of their excitation regions and of their dissipation during propagation. Then, the bottom of convective envelopes (the top of convective cores, respectively) are differential…

PhysicsConvectionAngular momentumAstronomy and AstrophysicsAstrophysicsInternal wave01 natural sciences010305 fluids & plasmasMagnetic fieldsymbols.namesakeClassical mechanicsSpace and Planetary ScienceQuantum electrodynamics0103 physical sciencesAngular momentum of lightsymbolsRadiative transferDifferential rotation010303 astronomy & astrophysicsLorentz forceAstronomy & Astrophysics
researchProduct

Stochastic gravito-inertial modes discovered by CoRoT in the hot Be star HD 51452

2012

International audience; Context. Be stars are rapidly rotating stars with a circumstellar decretion disk. They usually undergo pressure and/or gravity pulsation modes excited by the κ-mechanism, i.e. an effect of the opacity of iron-peak elements in the envelope of the star. In the Milky Way, p-modes are observed in stars that are hotter than or equal to the B3 spectral type, while g-modes are observed at the B2 spectral type and cooler. Aims. We observed a B0IVe star, HD 51452, with the high-precision, high-cadence photometric CoRoT satellite and high-resolution, ground-based HARPS and SOPHIE spectrographs to study its pulsations in great detail. We also used the lower resolution spectra a…

starsBe -stars010504 meteorology & atmospheric sciencesBe starK-type main-sequence staroscillations -starsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsrotation01 natural sciences0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsStellar structureindividual010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciences[PHYS]Physics [physics]PhysicsASTROFÍSICA ESTELARStellar rotationFlare starAstronomyAstronomy and AstrophysicsLight curveESPECTROSCOPIAHD 51452 -starsStarsT Tauri star13. Climate actionSpace and Planetary ScienceAstrophysics::Earth and Planetary Astrophysicsemission-line[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astronomy & Astrophysics
researchProduct