0000000000617586
AUTHOR
Johannes Ballé
Perceptual image quality assessment using a normalized Laplacian pyramid
Predicting perceptual distortion sensitivity with gain control models of LGN
Perceptually Optimized Image Rendering
We develop a framework for rendering photographic images by directly optimizing their perceptual similarity to the original visual scene. Specifically, over the set of all images that can be rendered on a given display, we minimize the normalized Laplacian pyramid distance (NLPD), a measure of perceptual dissimilarity that is derived from a simple model of the early stages of the human visual system. When rendering images acquired with a higher dynamic range than that of the display, we find that the optimization boosts the contrast of low-contrast features without introducing significant artifacts, yielding results of comparable visual quality to current state-of-the-art methods, but witho…