0000000000618672

AUTHOR

Hartmut Wittig

showing 75 related works from this author

Lattice QCD and the anomalous magnetic moment of the muon

2019

The anomalous magnetic moment of the muon, a_mu, has been measured with an overall precision of 540 ppb by the E821 experiment at BNL. Since the publication of this result in 2004 there has been a persistent tension of 3.5 standard deviations with the theoretical prediction of a_mu based on the Standard Model. The uncertainty of the latter is dominated by the effects of the strong interaction, notably the hadronic vacuum polarisation (HVP) and the hadronic light-by-light (HLbL) scattering contributions, which are commonly evaluated using a data-driven approach and hadronic models, respectively. Given that the discrepancy between theory and experiment is currently one of the most intriguing …

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physicsHadronLattice field theoryStrong interactionHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesLattice QCD01 natural sciencesHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)0103 physical sciencesHigh Energy Physics::Experiment010306 general physics
researchProduct

Nucleon isovector charges and twist-2 matrix elements with Nf=2+1 dynamical Wilson quarks

2019

We present results from a lattice QCD study of nucleon matrix elements at vanishing momentum transfer for local and twist-2 isovector operator insertions. Computations are performed on gauge ensembles with nonperturbatively improved ${N}_{f}=2+1$ Wilson fermions, covering four values of the lattice spacing and pion masses down to ${M}_{\ensuremath{\pi}}\ensuremath{\approx}200\text{ }\text{ }\mathrm{MeV}$. Several source-sink separations (typically $\ensuremath{\sim}1.0$ to $\ensuremath{\sim}1.5\text{ }\text{ }\mathrm{fm}$) allow us to assess excited-state contamination. Results on individual ensembles are obtained from simultaneous two-state fits across all observables and all available sou…

PhysicsIsovector010308 nuclear & particles physicsHigh Energy Physics::LatticeLattice field theoryLattice QCD01 natural sciencesPionLattice constantLattice (order)0103 physical sciencesHigh Energy Physics::ExperimentTwist010306 general physicsNucleonMathematical physicsPhysical Review D
researchProduct

The hadronic contribution to the running of the electromagnetic coupling and the electroweak mixing angle

2019

37th International Symposium on Lattice Field Theory, Wuhan, China, 16 Jun 2019 - 22 Jun 2019; PoS(LATTICE 2019)010 (2019).

QuarkParticle physicsneutral currentclover [fermion]High Energy Physics::LatticeHadronstandard modelLattice (group)hep-latWilson [quark]FOS: Physical sciencesLattice QCDelectromagnetic [current]nonperturbativeStandard Modelenergy dependenceHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)quantum chromodynamicshadronic [vacuum polarization]mixingVacuum polarizationcontinuum limitnumerical calculationsParticle Physics - PhenomenologylatticePhysicsElectroweak interactionHigh Energy Physics - Lattice (hep-lat)lattice field theoryflavor: 3 [quark]hep-phParticle Physics - LatticeFermionmass dependence [quark]High Energy Physics - Phenomenologyelectromagnetic [coupling]mixing angle [electroweak interaction]Energy (signal processing)
researchProduct

Nucleon average quark momentum fraction with Nf = 2+1 Wilson fermions

2018

We report on an analysis of the average quark momentum fraction of the nucleon and related quantities using Nf = 2 + 1 Wilson fermions. Computations are performed on four CLS ensembles covering three values of the lattice spacing at pion masses down to Mπ ≈ 200 MeV. Several source-sink separations (~ 1:0 fm to ~ 1:4 fm) are used to assess the excited-state contamination. To gain further insight, the generalized pencil-of-functions approach has been implemented to reduce the excited-state contamination in the relevant two-and three-point functions. Preliminary results are shown for the isovector nucleon charges from vector, axial vector and tensor derivative (twist-2) operators.

PhysicsQuantum chromodynamicsQuarkParticle physicsIsovector010308 nuclear & particles physicsHigh Energy Physics::LatticePhysicsQC1-999Nuclear TheoryFermion01 natural sciencesMomentumPion0103 physical sciences010306 general physicsNucleonPseudovectorEPJ Web of Conferences
researchProduct

Towards extracting the timelike pion form factor on CLS two-flavour ensembles

2017

35th International Symposium on Lattice Field Theory, Lattice 2017, Granada, Spain, 18 Jun 2017 - 24 Jun 2017; The European physical journal / Web of Conferences 175, 05027 (2018). doi:10.1051/epjconf/201817505027

PhysicsParticle physicsMuon010308 nuclear & particles physicsPhysicsQC1-999High Energy Physics::LatticeHadronHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesFermion01 natural sciences530Formalism (philosophy of mathematics)High Energy Physics - LatticeCLs upper limitsPion0103 physical sciencesddc:530High Energy Physics::ExperimentVacuum polarization010306 general physicsNuclear Experiment
researchProduct

5 QCD on the Lattice

2008

Since Wilson’s seminal papers of the mid-1970s, the lattice approach to Quantum Chromodynamics has become increasingly important for the study of the strong interaction at low energies, and has now turned into a mature and established technique. In spite of the fact that the lattice formulation of Quantum Field Theory has been applied to virtually all fundamental interactions, it is appropriate to discuss this topic in a chapter devoted to QCD, since by far the largest part of activity is focused on the strong interaction. Lattice QCD is, in fact, the only known method which allows ab initio investigations of hadronic properties, starting from the QCD Lagrangian formulated in terms of quark…

Quantum chromodynamicsPhysicsParticle physicsChiral perturbation theoryHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyLattice field theoryQCD vacuumQuark–gluon plasmaHigh Energy Physics::ExperimentLattice QCDChiral symmetry breakingFundamental interaction
researchProduct

Low-energy couplings of QCD from current correlators near the chiral limit

2004

We investigate a new numerical procedure to compute fermionic correlation functions at very small quark masses. Large statistical fluctuations, due to the presence of local ``bumps'' in the wave functions associated with the low-lying eigenmodes of the Dirac operator, are reduced by an exact low-mode averaging. To demonstrate the feasibility of the technique, we compute the two-point correlator of the left-handed vector current with Neuberger fermions in the quenched approximation, for lattices with a linear extent of L~1.5 fm, a lattice spacing a~0.09 fm, and quark masses down to the epsilon-regime. By matching the results with the corresponding (quenched) chiral perturbation theory expres…

QuarkNuclear and High Energy PhysicsChiral perturbation theoryCurrent (mathematics)High Energy Physics::LatticeFOS: Physical sciencesQuenched approximationStatistical fluctuationsDirac operatorsymbols.namesakechiral Lagrangianslattice QCDHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Latticelattice gauge field theoriesPhysicsQuantum chromodynamicsHigh Energy Physics - Lattice (hep-lat)FísicaFermionQCDFIS/02 - FISICA TEORICA MODELLI E METODI MATEMATICIHigh Energy Physics - PhenomenologyLattice gauge theoryQuantum electrodynamicssymbols
researchProduct

Strange Electromagnetic Form Factors of the Nucleon with Nf=2+1 O(a) -Improved Wilson Fermions

2019

We present results for the strange contribution to the electromagnetic form factors of the nucleon computed on the coordinated lattice simulation ensembles with N_{f}=2+1 flavors of O(a)-improved Wilson fermions and an O(a)-improved vector current. Several source-sink separations are investigated in order to estimate the excited-state contamination. We calculate the form factors on six ensembles with lattice spacings in the range of a=0.049-0.086  fm and pion masses in the range of m_{π}=200-360  MeV, which allows for a controlled chiral and continuum extrapolation. In the computation of the quark-disconnected contributions, we employ hierarchical probing as a variance-reduction technique.

PhysicsParticle physicsHigh Energy Physics::LatticeComputationExtrapolationGeneral Physics and AstronomyFermion01 natural sciencesPionLattice (order)0103 physical sciences010306 general physicsNucleonNuclear theoryPhysical Review Letters
researchProduct

Study of the anomalous magnetic moment of the muon computed from the Adler function

2014

We compute the Adler function on the lattice from vacuum polarization data with twisted boundary conditions using numerical derivatives. The study is based on CLS ensembles with two flavours of $O(a)$ improved Wilson fermions. We extrapolate the lattice data for the Adler function to the continuum limit and to the physical pion mass and analyze its dependence on the momentum transfer. We discuss the application of this method to the extraction of the $u,d$ contribution to $a_\mu^{\mathrm{HLO}}$.

PhysicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physicsHigh Energy Physics::LatticeMomentum transferHigh Energy Physics - Lattice (hep-lat)FOS: Physical scienceshep-latFermion01 natural sciencesPionHigh Energy Physics - LatticeQuantum electrodynamicsLattice (order)0103 physical sciencesBoundary value problemVacuum polarization010306 general physicsPoS(LATTICE2014)162
researchProduct

Nonperturbative Determination of the QCD Potential atO(1/m)

2006

The relativistic correction to the QCD static interquark potential at O(1/m) is investigated nonperturbatively for the first time by using lattice Monte Carlo QCD simulations. The correction is found to be comparable with the Coulombic term of the static potential when applied to charmonium, and amounts to one-fourth of the Coulombic term for bottomonium.

PhysicsQuantum chromodynamicsParticle physicsSpectral representationHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyMonte Carlo methodLattice field theoryGeneral Physics and AstronomyLattice monte carloQuantum electrodynamicsLattice gauge theoryHigh Energy Physics::ExperimentNuclear theoryPhysical Review Letters
researchProduct

Towards the N_f=2 deconfinement transition temperature with O(a) improved Wilson fermions: An update

2010

We give an update on our current project to determine the transition temperature and the order of the deconfinement transition in the chiral limit of two flavour QCD. We use nonperturbatively O(a) improved Wilson fermions of the Sheikholeslami-Wohlert type, employing the efficient deflation accelerated DDHMC algorithm. We start at lattices with N_t>=12 and pion masses below 600 MeV, aiming at chiral and continuum limits with light quarks.

Quantum chromodynamicsQuarkPhysicsParticle physicsTransition temperatureHigh Energy Physics::LatticeFlavourHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFOS: Physical sciencesFermionDeconfinementPionHigh Energy Physics - LatticeHigh Energy Physics::Experiment
researchProduct

Hadronic light-by-light scattering contribution to the muon $g-2$ on the lattice

2018

International Workshop on “Flavour Changing and Conserving Processes, FCCP2017, Anacapri, Italy, 7 Sep 2017 - 9 Sep 2017; The European physical journal / Web of Conferences 179, 01017 (2018). doi:10.1051/epjconf/201817901017

Particle physicsPhotonQC1-999High Energy Physics::LatticeHadronFOS: Physical sciences01 natural sciences530Light scatteringPionHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530010306 general physicsNuclear ExperimentPhysicsMuon010308 nuclear & particles physicsScatteringPhysicsHigh Energy Physics - Lattice (hep-lat)Lattice QCDHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentLepton
researchProduct

Numerical studies of Minimally Doubled Fermions

2013

We have performed the first numerical study of minimally doubled fermions of the Karsten-Wilczek class in the quenched approximation. This requires fixing the counterterms, which arise due to hypercubic symmetry breaking induced by the Karsten-Wilczek term. Non-perturbative renormalisation criteria are formulated after a detailed study of the parameter dependence of mesonic observables. Minimisation of the mass anisotropy of the pseudoscalar ground state fixes non-perturbative renormalisation conditions for the counterterm coefficients. These anisotropies are mapped out by probing different euclidean components of the transfer matrix through calculations of the pseudoscalar ground state mas…

PhysicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyHigh Energy Physics - Lattice (hep-lat)Lattice (group)FOS: Physical sciencesObservableQuenched approximationFermionTransfer matrixPseudoscalarHigh Energy Physics - LatticeSymmetry breakingGround stateMathematical physics
researchProduct

Lattice calculations of the leading hadronic contribution to g-2

2012

We report on our ongoing project to calculate the leading hadronic contribution to the anomalous magnetic moment of the muon aHLO μ using two dynamical flavours of non-perturbatively O(a) improved Wilson fermions. In this study, we changed the vacuum polarisation tensor to a combination of local and point-split currents which significantly reduces the numerical effort. Partially twisted boundary conditions allow us to improve the momentum resolution of the vacuum polarisation tensor and therefore the determination of the leading hadronic contribution to (g− 2)μ . We also extended the range of ensembles to include a pion mass below 200MeV which allows us to check the non-trivial chiral behav…

Quantum chromodynamicsPhysicsParticle physicsPionMuonAnomalous magnetic dipole momentHigh Energy Physics::LatticeHadronLattice field theoryFermionLattice QCDProceedings of The 30th International Symposium on Lattice Field Theory — PoS(Lattice 2012)
researchProduct

The scalar radius of the pion in two-flavor Wilson lattice QCD

2014

PhysicsParticle physicsPionScalar (mathematics)RadiusLattice QCDFlavorProceedings of 31st International Symposium on Lattice Field Theory LATTICE 2013 — PoS(LATTICE 2013)
researchProduct

Testing the strength of the UA(1) anomaly at the chiral phase transition in two-flavour QCD

2019

We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $\mathcal{O}(a)$-improved Wilson quarks. Particular emphasis lies on the pattern of chiral symmetry restoration, which we probe via the static screening correlators. On $32^3$ volumes we observe that the screening masses in transverse iso-vector vector and axial-vector channels become degenerate at the transition temperature. The splitting between the screening masses in iso-vector scalar and pseudoscalar channels is strongly reduced compared to the splitting at zero temperature and is actually consistent with zero within uncertainties. In this proceedings article we extend our studies to …

Quantum chromodynamicsQuarkPhysicsParticle physicsnucl-thNuclear TheoryHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Lattice field theoryDegenerate energy levelshep-latFOS: Physical scienceshep-phParticle Physics - LatticeLattice QCDNuclear Theory (nucl-th)PseudoscalarHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)PionNuclear Physics - TheoryPseudovectorMass screeningParticle Physics - PhenomenologyProceedings of The 9th International workshop on Chiral Dynamics — PoS(CD2018)
researchProduct

Low-energy couplings of QCD from topological zero-mode wave functions

2003

By matching 1/m^2 divergences in finite-volume two-point correlation functions of the scalar or pseudoscalar densities with those obtained in chiral perturbation theory, we derive a relation between the Dirac operator zero-mode eigenfunctions at fixed non-trivial topology and the low-energy constants of QCD. We investigate the feasibility of using this relation to extract the pion decay constant, by computing the zero-mode correlation functions on the lattice in the quenched approximation and comparing them with the corresponding expressions in quenched chiral perturbation theory.

Quantum chromodynamicsPhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsZero modeChiral perturbation theoryHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)FísicaFOS: Physical sciencesParticle Physics - LatticeQuenched approximationDirac operatorTopologyPseudoscalarsymbols.namesakelattice QCDHigh Energy Physics - LatticeHigh Energy Physics - Theory (hep-th)nonperturbative effectssymbolschiral lagrangiansPion decay constantWave function
researchProduct

The scalar pion form factor in two-flavor lattice QCD

2013

We calculate the scalar form factor of the pion using two dynamical flavors of non-perturbatively $\mathcal{O}(a)$-improved Wilson fermions, including both the connected and the disconnected contribution to the relevant correlation functions. We employ the calculation of all-to-all propagators using stochastic sources and a generalized hopping parameter expansion. From the form factor data at vanishing momentum transfer, $Q^2=0$, and two non-vanishing $Q^2$ we obtain an estimate for the scalar radius $\left^\pi_{_{\rm S}}$ of the pion at one value of the lattice spacing and for five different pion masses. Using Chiral Perturbation Theory at next-to-leading order, we find $\left^\pi_{_{\rm S…

PhysicsNuclear and High Energy PhysicsParticle physicsChiral perturbation theoryHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Momentum transferScalar (mathematics)Form factor (quantum field theory)FOS: Physical sciencesOrder (ring theory)PropagatorLattice QCDHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)PionHigh Energy Physics - Lattice
researchProduct

‘‘Improved’’ lattice study of semileptonic decays ofDmesons

1995

We present results of a lattice computation of the matrix elements of the vector and axial-vector currents which are relevant for the semi-leptonic decays $D \rightarrow K$ and $D \rightarrow K^*$. The computations are performed in the quenched approximation to lattice QCD on a $24^3 \times 48$ lattice at $\beta=6.2$, using an $O(a)$-improved fermionic action. In the limit of zero lepton masses the semi-leptonic decays $D \rightarrow K$ and $D \rightarrow K^*$ are described by four form factors: $f^{+}_K,V,A_1$ and $A_2$, which are functions of $q^2$, where $q^{\mu}$ is the four-momentum transferred in the process. Our results for these form factors at $q^2=0$ are: $f^+_K(0)=0.67 \er{7}{8}$…

Semileptonic decayPhysicsStatistics::TheoryParticle physicsStatistics::ApplicationsMesonHigh Energy Physics - Lattice (hep-lat)Lattice field theoryZero (complex analysis)Lattice (group)Form factor (quantum field theory)FOS: Physical sciencesFísicaQuenched approximationLattice QCDHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeHigh Energy Physics::ExperimentPhysical Review D
researchProduct

Towards extracting the timelike pion form factor on CLS 2-flavour ensembles

2016

Results are presented from an ongoing study of the $\rho$ resonance. We use the distillation approach in order to create correlator matrices involving $\rho$ and $\pi\pi$ interpolators. The study is done in a centre-of-mass frame and several moving frames. We are able to extract energy levels by solving the GEVP of those correlator matrices. The initial exploratory study is being done on a CLS 2-flavour lattice with a pion mass of $451$ $\mathrm{MeV}$ using $\mathcal{O}(a)$ improved Wilson fermions. One aim of this work is to extract the timelike pion form factor after applying the L\"uscher formalism. We also plan to integrate this study with the existing Mainz programme for the calculatio…

PhysicsParticle physicsMuonHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)HadronFlavourFOS: Physical sciencesFermionHigh Energy Physics - LatticePionCLs upper limitsLattice (order)High Energy Physics::ExperimentVacuum polarizationNuclear ExperimentProceedings of 34th annual International Symposium on Lattice Field Theory — PoS(LATTICE2016)
researchProduct

The Isgur-Wise function from the lattice

1995

We calculate the Isgur-Wise function by measuring the elastic scattering amplitude of a $D$ meson in the quenched approximation on a $24^3\times48$ lattice at $\beta=6.2$, using an $O(a)$-improved fermion action. Fitting the resulting chirally-extrapolated Isgur-Wise function to Stech's relativistic-oscillator parametrization, we obtain a slope parameter $\rho^2=1.2+7-3. We then use this result, in conjunction with heavy-quark symmetry, to extract $V_{cb}$\ from the experimentally measured $\bar B\to D^*l\bar\nu\,$\ differential decay width. We find $|V_{cb}|\sqrt{\tau_B/1.48{\mathrm ps}}= 0.038 +2-2 +8-3, where the first set of errors is due to experimental uncertainties, while the second …

Semileptonic decayStatistics::TheoryParticle physicsEXTRACTIONMesonFORM-FACTORSHigh Energy Physics::LatticeHadronQUARK EFFECTIVE THEORYGeneral Physics and AstronomyFOS: Physical sciencesQuenched approximationElementary particleFaculty of Science\Computer ScienceParticle decayHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)B-MESON DECAYSD mesonB mesonMathematical physicsPhysicsStatistics::ApplicationsHEAVY MESONSHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFísicaVCBQCDHigh Energy Physics - PhenomenologyWILSONHigh Energy Physics::Experiment
researchProduct

Nucleon matrix elements from lattice QCD with all-mode-averaging and a domain-decomposed solver: An exploratory study

2017

We study the performance of all-mode-averaging (AMA) when used in conjunction with a locally deflated SAP-preconditioned solver, determining how to optimize the local block sizes and number of deflation fields in order to minimize the computational cost for a given level of overall statistical accuracy. We find that AMA enables a reduction of the statistical error on nucleon charges by a factor of around two at the same cost when compared to the standard method. As a demonstration, we compute the axial, scalar and tensor charges of the nucleon in $N_f=2$ lattice QCD with non-perturbatively O(a)-improved Wilson quarks, using O(10,000) measurements to pursue the signal out to source-sink sepa…

QuarkPhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)Scalar (physics)FOS: Physical sciencesCharge (physics)Lattice QCDComputational Physics (physics.comp-ph)Solver01 natural sciencesMatrix (mathematics)High Energy Physics - Lattice13. Climate actionQuantum electrodynamics0103 physical scienceslcsh:QC770-798ddc:530lcsh:Nuclear and particle physics. Atomic energy. RadioactivityTensor010306 general physicsNucleonPhysics - Computational PhysicsNuclear Physics B
researchProduct

Lattice calculation of the hadronic leading order contribution to the muon g − 2

2019

The European physical journal / Web of Conferences Web of Conferences : proceedings proceedings 234, 01016 - (2020). doi:10.1051/epjconf/202023401016

QuarkPhysicsParticle physicsMuonAnomalous magnetic dipole momentComputer Science::Information RetrievalPhysics beyond the Standard ModelHigh Energy Physics::LatticePhysicsQC1-999High Energy Physics - Lattice (hep-lat)HadronHigh Energy Physics::PhenomenologyFOS: Physical sciencesLattice QCDLattice QCD530Standard deviationHigh Energy Physics - LatticeLattice (order)ddc:530High Energy Physics::ExperimentEPJ Web of Conferences
researchProduct

Geometrical volume effects in the computation of the slope of the isgur-wise function

1994

We use a method recently suggested for evaluating the slope of the Isgur-Wise function, at the zero-recoil point, on the lattice. The computations are performed in the quenched approximation to lattice QCD, on a $24^3 \times 48$ lattice at $\beta=6.2$, using an $O(a)$-improved action for the fermions. We have found unexpectedly large finite-volume effects in such a calculation. These volume corrections turned out to be purely geometrical and independent of the dynamics of the system. After the study of these effects on a smaller volume and for different quark masses, we give approximate expressions that account for them. Using these approximations we find $\xi^\prime(1)=-1.7 \pm 0.2$ and $\…

QuarkPhysicsNuclear and High Energy PhysicsStrange quarkParticle physicsMesonHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyDown quarkFOS: Physical sciencesFísicaQuenched approximationLattice QCDCharm quarkHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Up quarkHigh Energy Physics::Experiment
researchProduct

Nucleon axial charge in lattice QCD with controlled errors

2012

We report on our calculation of the nucleon axial charge ${g}_{\mathrm{A}}$ in QCD with two flavors of dynamical quarks. A detailed investigation of systematic errors is performed, with a particular focus on contributions from excited states to three-point correlation functions. The use of summed operator insertions allows for a much better control over such contamination. After performing a chiral extrapolation to the physical pion mass, we find ${g}_{\mathrm{A}}=1.223\ifmmode\pm\else\textpm\fi{}0.063(\mathrm{stat}{)}_{\ensuremath{-}0.060}^{+0.035}(\mathrm{syst})$, in good agreement with the experimental value.

PhysicsQuantum chromodynamicsQuarkNuclear and High Energy PhysicsParticle physicsPionHigh Energy Physics::LatticeLattice field theoryHigh Energy Physics::ExperimentCharge (physics)Lattice QCDCorrelation function (quantum field theory)NucleonPhysical Review D
researchProduct

Low-energy particle physics and chiral extrapolations

2012

In this review I discuss the role of chiral extrapolations for the determination of several phenomenologically relevant quantities, including light quark masses, meson decay constants and the axial charge of the nucleon. In particular, I investigate whether chiral extrapolations are sufficiently controlled in order to rightfully claim the accuracy which is quoted in recent compilations of these quantities. While this is the case for the masses of the light quarks and the ratio fK/fpi of decay constants, small inconsistencies in the chiral and continuum behaviour of individual decay constants fK and fpi, as well as the hadronic radii r0, r1 remain and must be clarified. In the case of the nu…

QuarkPhysicsParticle physicsNuclear TheoryMesonHigh Energy Physics::LatticeHadronLattice field theoryNuclear TheoryHigh Energy Physics::PhenomenologyHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesNuclear physicsNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - LatticeLow energyHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)High Energy Physics::ExperimentNucleon
researchProduct

Rho resonance, timelike pion form factor, and implications for lattice studies of the hadronic vacuum polarization

2020

We study isospin-1 P-wave ππ scattering in lattice QCD with two flavors of O(a) improved Wilson fermions. For pion masses ranging from mπ=265 MeV to mπ=437 MeV, we determine the energy spectrum in the center-of-mass frame and in three moving frames. We obtain the scattering phase shifts using Lüscher’s finite-volume quantization condition. Fitting the dependence of the phase shifts on the scattering momentum to a Breit-Wigner form allows us to determine the corresponding ρ mass mρ and gρππ coupling. By combining the scattering phase shifts with the decay matrix element of the vector current, we calculate the timelike pion form factor, Fπ, and compare the results to the Gounaris-Sakurai repr…

1 [isospin]Particle physicsdecay constant [rho(770)]High Energy Physics::Latticeclover [fermion]energy spectrumFOS: Physical sciencesWilson [quark]01 natural sciencesphase shiftHigh Energy Physics - LatticePionvector [correlation function]Charge radius0103 physical sciencesmagnetic moment [muon]quantum chromodynamicsmass [rho(770)]hadronic [vacuum polarization]ddc:530Vacuum polarizationflavor: 2 [quark]010306 general physicsnumerical calculationscharge radius [pi]PhysicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physicsScatteringHigh Energy Physics - Lattice (hep-lat)scatteringlattice field theoryLattice QCDFermionBreit-Wignermass dependence [quark]form factor [pi]effect [finite size]vector [current]quantizationPhysical Review D
researchProduct

Non-perturbative renormalization of the quark condensate in Ginsparg-Wilson regularizations

2001

We present a method to compute non-perturbatively the renormalization constant of the scalar density for Ginsparg-Wilson fermions. It relies on chiral symmetry and is based on a matching of renormalization group invariant masses at fixed pseudoscalar meson mass, making use of results previously obtained by the ALPHA Collaboration for O(a)-improved Wilson fermions. Our approach is quite general and enables the renormalization of scalar and pseudoscalar densities in lattice regularizations that preserve chiral symmetry and of fermion masses in any regularization. As an application we compute the non-perturbative factor which relates the renormalization group invariant quark condensate to its …

QuarkPhysicsNuclear and High Energy PhysicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFOS: Physical sciencesFísicaParticle Physics - LatticeQuenched approximationFermionRenormalization groupPseudoscalar mesonRenormalizationPseudoscalarHigh Energy Physics - LatticeRegularization (physics)Mathematical physicsJournal of High Energy Physics
researchProduct

Towards leading isospin breaking effects in mesonic masses with $O(a)$ improved Wilson fermions

2017

We present an exploratory study of leading isospin breaking effects in mesonic masses using $O(a)$ improved Wilson fermions. Isospin symmetry is explicitly broken by distinct masses and electric charges of the up and down quarks. In order to be able to make use of existing isosymmetric QCD gauge ensembles we apply reweighting techniques. The path integral describing QCD+QED is expanded perturbatively in powers of the light quarks' mass deviations and the electromagnetic coupling. We employ QED$_{\mathrm{L}}$ as a finite volume formulation of QED.

Quantum chromodynamicsQuarkPhysicsParticle physics010308 nuclear & particles physicsPhysicsQC1-999Computer Science::Information RetrievalHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Nuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesFermionGauge (firearms)01 natural sciencesElectric chargeSymmetry (physics)High Energy Physics - LatticeIsospin0103 physical sciencesPath integral formulationHigh Energy Physics::Experiment010306 general physics
researchProduct

Non-perturbative renormalisation of left left four-fermion operators with Neuberger fermions

2006

We outline a general strategy for the non-perturbative renormalisation of composite operators in discretisations based on Neuberger fermions, via a matching to results obtained with Wilson-type fermions. As an application, we consider the renormalisation of the four-quark operators entering the Delta S=1 and Delta S=2 effective Hamiltonians. Our results are an essential ingredient for the determination of the low-energy constants governing non-leptonic kaon decays.

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)field theory gauge theory lattice renormalizationHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísicaParticle Physics - LatticeFermionComposite operatorRenormalizationFIS/02 - FISICA TEORICA MODELLI E METODI MATEMATICIHigh Energy Physics - LatticeOperator (computer programming)High Energy Physics::ExperimentNon-perturbativeMathematical physics
researchProduct

Lattice Determination of the Anomalous Magnetic Moment of the Muon

2011

We compute the leading hadronic contribution to the anomalous magnetic moment of the muon a_mu^HLO using two dynamical flavours of non-perturbatively O(a) improved Wilson fermions. By applying partially twisted boundary conditions we are able to improve the momentum resolution of the vacuum polarisation, an important ingredient for the determination of the leading hadronic contribution. We check systematic uncertainties by studying several ensembles, which allows us to discuss finite size effects and lattice artefacts. The chiral behavior of a_mu^HLO turns out to be non-trivial, especially for small pion masses.

PhysicsParticle physicsMuonAnomalous magnetic dipole momentHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)HadronFOS: Physical sciencesParticle Physics - LatticeFermionPionHigh Energy Physics - LatticeLattice (order)High Energy Physics::ExperimentBoundary value problem
researchProduct

Isovector electromagnetic form factors of the nucleon from lattice QCD and the proton radius puzzle

2021

Physical review / D 103(9), 094522 (2021). doi:10.1103/PhysRevD.103.094522

PhysicsParticle physicsChiral perturbation theoryNuclear TheoryIsovector010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Lattice (group)Form factor (quantum field theory)FOS: Physical sciencesOrder (ring theory)Lattice QCD01 natural sciences530Nuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Charge radius0103 physical sciencesddc:530Nuclear Experiment010306 general physicsNucleon
researchProduct

Nucleon electromagnetic form factors in two-flavor QCD

2015

We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured on the CLS ensembles. Particular focus is placed on a systematic evaluation of the influence of excited states in three-point correlation functions, which lead to a biased evaluation, if not accounted for correctly. We argue that the use of summed operator insertions and fit ans\"atze including excited states allow us to suppress and control this effect. We employ a novel method to perform joint chiral and continuum extrapolations, by fitting th…

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsNuclear TheoryMagnetic momentHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Momentum transferFOS: Physical sciencesFermionNuclear Theory (nucl-th)BaryonHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Charge radiusQuantum electrodynamicsEffective field theoryNucleonPhysical Review D
researchProduct

Excited state systematics in extracting nucleon electromagnetic form factors

2012

We present updated preliminary results for the nucleon electromagnetic form factors for non-perturbatively $\mathcal{O}(a)$ improved Wilson fermions in $N_f=2$ QCD measured on the CLS ensembles. The use of the summed operator insertion method allows us to suppress the influence of excited states in our measurements. A study of the effect that excited state contaminations have on the $Q^2$ dependence of the extracted nucleon form factors may then be made through comparisons of the summation method to standard plateau fits, as well as to excited state fits.

PhysicsQuantum chromodynamicsParticle physicsOperator (physics)High Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesFermionPlateau (mathematics)CLs upper limitsHigh Energy Physics - LatticeExcited stateQuantum electrodynamicsNucleon
researchProduct

The leading disconnected contribution to the anomalous magnetic moment of the muon

2014

The hadronic vacuum polarization can be determined from the vector correlator in a mixed time-momentum representation. We explicitly calculate the disconnected contribution to the vector correlator, both in the $N_f = 2$ theory and with an additional quenched strange quark, using non-perturbatively $O(a)$-improved Wilson fermions. All-to-all propagators are computed using stochastic sources and a generalized hopping parameter expansion. Combining the result with the dominant connected contribution, we are able to estimate an upper bound for the systematic error that arises from neglecting the disconnected contribution in the determination of $(g-2)_\mu$.

PhysicsStrange quarkMuonAnomalous magnetic dipole momentHigh Energy Physics::LatticeHadronHigh Energy Physics - Lattice (hep-lat)PropagatorFOS: Physical sciencesFermionUpper and lower boundsHigh Energy Physics - LatticeQuantum electrodynamicsVacuum polarization
researchProduct

The hadronic vacuum polarization function with O(a)-improved Wilson fermions - an update

2016

We present an update of our lattice QCD study of the vacuum polarization function using O$(a)$-improved $N_ {\rm f} =2$ Wilson fermions with increased statistics and a large set of momenta. The resulting points are highly correlated and thus require a correlated fitting procedure. We employ an extended frequentist method to estimate the systematic uncertainties due to the momentum dependence and to the continuum and chiral extrapolations. We present preliminary results of the leading order hadronic contribution of the anomalous magnetic moment of the muon $\left(a_\mu^{\mathrm{HLO}}\right)$ at the physical point for $u,d,s$ and $c$ valence quarks.

PhysicsParticle physicsHigh Energy Physics - LatticeHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesHumanities3. Good health
researchProduct

Adler function and hadronic vacuum polarization from lattice vector correlators in the time-momentum representation

2014

We study a representation of the hadronic vacuum polarization based on the time-momentum representation of the vector correlator. This representation suggests a way to compute the hadronic vacuum polarization and the associated Adler function for any value of virtuality, irrespective of the flavor structure of the current. We present results on both of these phenomenologically important functions, derived from local-conserved two-point lattice vector correlation functions, computed on a subset of light two-flavor ensembles made available to us through the CLS effort.

PhysicsParticle physicsCLs upper limitsLattice (order)High Energy Physics::PhenomenologyHadronVacuum polarizationProceedings of 31st International Symposium on Lattice Field Theory LATTICE 2013 — PoS(LATTICE 2013)
researchProduct

On the strength of the U A (1) anomaly at the chiral phase transition in N f = 2 QCD

2016

We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $O(a)$-improved Wilson quarks. Temperature scans are performed at a fixed value of $N_t = (aT)^{-1}=16$, where $a$ is the lattice spacing and $T$ the temperature, at three fixed zero-temperature pion masses between 200 MeV and 540 MeV. In this range we find that the transition is consistent with a broad crossover. As a probe of the restoration of chiral symmetry, we study the static screening spectrum. We observe a degeneracy between the transverse isovector vector and axial-vector channels starting from the transition temperature. Particularly striking is the strong reduction of the split…

Nuclear and High Energy PhysicsNuclear TheorySpontaneous symmetry breakingHigh Energy Physics::LatticeNuclear TheoryFOS: Physical sciences01 natural sciencesNuclear Theory (nucl-th)PionHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsMass screeningPhysicsQuantum chromodynamicsIsovectorCondensed matter physics010308 nuclear & particles physicsTransition temperatureMESON SCREENING MASSES; HIGH-TEMPERATURE PHASE; QUARK-GLUON PLASMA; LATTICE QCD; WILSON FERMIONS; HADRONIC SPECTRUM; O(A) IMPROVEMENT; U(1)(A) SYMMETRY; GAUGE-THEORIES; STRANGE QUARK; Global Symmetries; Lattice QCD; Phase Diagram of QCD; Spontaneous Symmetry BreakingHigh Energy Physics - Lattice (hep-lat)ddc:530Lattice QCD530 PhysikPseudoscalarHigh Energy Physics - Phenomenology
researchProduct

A new representation of the Adler function for lattice QCD

2013

We address several aspects of lattice QCD calculations of the hadronic vacuum polarization and the associated Adler function. We implement a representation derived previously which allows one to access these phenomenologically important functions for a continuous set of virtualities, irrespective of the flavor structure of the current. Secondly we present a theoretical analysis of the finite-size effects on our particular representation of the Adler function, based on the operator product expansion at large momenta and on the spectral representation of the Euclidean correlator at small momenta. Finally, an analysis of the flavor structure of the electromagnetic current correlator is perform…

PhysicsNuclear and High Energy PhysicsCurrent (mathematics)DiagramLattice field theoryHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyRepresentation (systemics)FOS: Physical sciencesFunction (mathematics)Lattice QCDHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeVacuum polarizationOperator product expansionMathematical physics
researchProduct

Light-by-light forward scattering amplitudes in Lattice QCD

2017

We present our preliminary results on the calculation of hadronic light-by-light forward scattering amplitudes using vector four-point correlation functions computed on the lattice. Using a dispersive approach, forward scattering amplitudes can be described by $\gamma^* \gamma^* \to$ hadrons fusion cross sections and then compared with phenomenology. We show that only a few states are needed to reproduce our data. In particular, the sum rules considered in this study imply relations between meson$-\gamma\gamma$ couplings and provide valuable information about individual form factors which are often used to estimate the meson-pole contributions to the hadronic light-by-light contribution to …

PhysicsParticle physicsMuon010308 nuclear & particles physicsForward scatterComputer Science::Information RetrievalPhysicsQC1-999HadronHigh Energy Physics - Lattice (hep-lat)Lattice (group)FOS: Physical sciencesLattice QCD01 natural sciencesHigh Energy Physics - PhenomenologyAmplitudeHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsPhenomenology (particle physics)
researchProduct

QCD thermodynamics with two flavours of Wilson fermions on large lattices

2012

We explore the phase diagram of two flavour QCD at vanishing chemical potential using dynamical O(a)-improved Wilson quarks. In the approach to the chiral limit we use lattices with a temporal extent of N_t=16 and spatial extent L=32,48 and 64 to enable the extrapolation to the thermodynamic limit with small discretisation effects. In addition to an update on the scans at constant \kappa, reported earlier, we present first results from scans along lines of constant physics at a pion mass of 290 MeV. We probe the transition using the Polyakov loop and the chiral condensate, as well as spectroscopic observables such as screening masses.

QuarkQuantum chromodynamicsPhysicsTheoretical physicsHigh Energy Physics - LatticeQuantum electrodynamicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesddc:530FermionLimit (mathematics)Phase diagram
researchProduct

Hadronic contribution to the lepton anomalous magnetic moment and pion form factor in lattice QCD

2012

Abstract The Mainz lattice QCD group is currently carrying out simulations of lattice QCD with the aim of making predictions for a wide range of phenomenologically relevant Standard Model properties. Here we present progress in understanding and controlling systematic effects in the computation of the pion vector form factor and the leading hadronic contribution to the lepton anomalous magnetic moment.

PhysicsNuclear and High Energy PhysicsParticle physicsAnomalous magnetic dipole moment010308 nuclear & particles physicsHigh Energy Physics::LatticeComputationNuclear TheoryHigh Energy Physics::PhenomenologyHadronForm factor (quantum field theory)Lattice QCD01 natural sciencesNuclear physicsStandard Model (mathematical formulation)Pion0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsLeptonProgress in Particle and Nuclear Physics
researchProduct

A lattice calculation of the hadronic vacuum polarization contribution to (g - 2)μ

2017

We present results of calculations of the hadronic vacuum polarisation contribution to the muon anomalous magnetic moment. Specifically, we focus on controlling the infrared regime of the vacuum polarisation function. Our results are corrected for finite-size effects by combining the Gounaris-Sakurai parameterisation of the timelike pion form factor with the Lüscher formalism. The impact of quark-disconnected diagrams and the precision of the scale determination is discussed and included in our final result in two-flavour QCD, which carries an overall uncertainty of 6%. We present preliminary results computed on ensembles with Nf = 2 + 1 dynamical flavours and discuss how the long-distance …

PhysicsQuantum chromodynamicsParticle physicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physicsPhysicsQC1-999High Energy Physics::LatticeHadronHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyLattice (group)Form factor (quantum field theory)FOS: Physical sciences01 natural sciencesHigh Energy Physics - PhenomenologyPionHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Lattice0103 physical sciencesHigh Energy Physics::ExperimentVacuum polarization010306 general physics
researchProduct

Scale setting via the \Omega\ baryon mass

2011

We present the first results of an ongoing effort to determine the lattice scale on the N_f=2 CLS lattice ensembles via the mass of the \Omega\ baryon. Results from different methods are compared, and various sources of systematic uncertainty are discussed.

PhysicsParticle physicsHigh Energy Physics - LatticeScale (ratio)High Energy Physics::LatticeOmega baryon
researchProduct

Minimally doubled fermions at one loop

2009

Minimally doubled fermions have been proposed as a cost-effective realization of chiral symmetry at non-zero lattice spacing. Using lattice perturbation theory at one loop, we study their renormalization properties. Specifically, we investigate the consequences of the breaking of hyper-cubic symmetry, which is a typical feature of this class of fermionic discretizations. Our results for the quark self-energy indicate that the four-momentum undergoes a renormalization which contains a linearly divergent piece. We also compute renormalization factors for quark bilinears, construct the conserved vector and axial-vector currents and verify that at one loop the renormalization factors of the lat…

PhysicsQuarkNuclear and High Energy PhysicsFermion doublingChiral perturbation theoryHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Lattice field theoryFOS: Physical sciencesFermionRenormalizationHigh Energy Physics - LatticeQuantum electrodynamicsFunctional renormalization groupChiral symmetry breakingMathematical physicsPhysics Letters B
researchProduct

Non-perturbative renormalization of static-light four-fermion operators in quenched lattice QCD

2007

We perform a non-perturbative study of the scale-dependent renormalization factors of a multiplicatively renormalizable basis of $\Delta{B}=2$ parity-odd four-fermion operators in quenched lattice QCD. Heavy quarks are treated in the static approximation with various lattice discretizations of the static action. Light quarks are described by non-perturbatively ${\rm O}(a)$ improved Wilson-type fermions. The renormalization group running is computed for a family of Schroedinger functional (SF) schemes through finite volume techniques in the continuum limit. We compute non-perturbatively the relation between the renormalization group invariant operators and their counterparts renormalized in …

PhysicsQuarkNuclear and High Energy PhysicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Lattice field theoryFOS: Physical sciencesParticle Physics - LatticeLattice QCDFermionRenormalization groupRenormalizationHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeLattice (order)lattice gauge field theories; lattice qcd; lattice quantum field theoryNon-perturbativeMathematical physics
researchProduct

Hadronic Contributions to the Anomalous Magnetic Moment of the Muon from Lattice QCD

2021

The Standard Model of Particle Physics describes three of the four known fundamental interactions: the strong interaction between quarks and gluons, the electromagnetic interaction, and the weak interaction. While the Standard Model is extremely successful, we know that it is not a complete description of nature. One way to search for physics beyond the Standard Model lies in the measurement of precision observables. The anomalous magnetic moment of the muon \(a_\mu \equiv \frac{1}{2}(g-2)_\mu \), quantifying the deviation of the gyromagnetic ratio from the exact value of 2 predicted by the Dirac equation, is one such precision observable. It exhibits a persistent discrepancy of 3.5 standar…

Quantum chromodynamicsPhysicsParticle physicsMuonAnomalous magnetic dipole momentPhysics beyond the Standard ModelStrong interactionLattice (group)Lattice QCDWeak interaction
researchProduct

Lattice QCD study of the $H$ dibaryon using hexaquark and two-baryon interpolators

2019

Physical review / D 99(7), 074505 (2019). doi:10.1103/PhysRevD.99.074505

Particle physicsnucl-thNuclear TheoryHigh Energy Physics::LatticeNuclear TheoryLattice field theoryFOS: Physical scienceshep-latCorrelation function (quantum field theory)530Computer Science::Digital Libraries01 natural sciencesNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)High Energy Physics - Lattice0103 physical sciencesBound stateddc:530010306 general physicsParticle Physics - PhenomenologyQuantum chromodynamicsPhysics010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)hep-phParticle Physics - LatticeLattice QCDRest frameBaryonHigh Energy Physics - PhenomenologyNuclear Physics - TheoryIsospin
researchProduct

Getting covariantly smeared sources into better shape

2014

The use of covariantly smeared sources in hadronic correlators is a common method of improving the projection onto the ground state. Studying the dependence of the shape of such sources on the gauge field background, we find that localized fluxes of magnetic field can strongly distort the sources. This results in a reduction of the smearing radii that can be reached by iterative smearing prescriptions, in particular as the continuum limit is approached. As a remedy, we propose a novel covariant smearing procedure (“free-form smearing”) enabling the creation of arbitrarily shaped sources, including in particular Gaussians of arbitrary radius, as well as shapes with nodes, such as hydrogenic …

PhysicsTheoretical physicsContinuum (measurement)High Energy Physics::LatticeHadronCovariant transformationRadiusGauge theoryGround stateWave functionMagnetic field
researchProduct

Heavy Baryon Specroscopy from the Lattice

1996

The results of an exploratory lattice study of heavy baryon spectroscopy are presented. We have computed the full spectrum of the eight baryons containing a single heavy quark, on a $24^3\times 48$ lattice at $\beta=6.2$, using an $O(a)$-improved fermion action. We discuss the lattice baryon operators and give a method for isolating the contributions of the spin doublets $(\Sigma,\Sigma^*)$, $(\Xi',\Xi^*)$ and $(\Omega,\Omega^*)$ to the correlation function of the relevant operator. We compare our results with the available experimental data and find good agreement in both the charm and the beauty sectors, despite the long extrapolation in the heavy quark mass needed in the latter case. We …

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsMesonHigh Energy Physics::LatticeLattice field theoryNuclear TheoryHigh Energy Physics::PhenomenologyHigh Energy Physics - Lattice (hep-lat)FísicaFOS: Physical sciencesFermionOmegaNuclear physicsBaryonCharmed baryonsHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)High Energy Physics::ExperimentNuclear Experiment
researchProduct

Electromagnetic form factors and axial charge of the nucleon from Nf = 2 + 1 Wilson fermions

2018

We present an update on our determination of the electromagnetic form factors and axial charge of the nucleon from theNf= 2 + 1 CLS ensembles with increased statistics and an additional finer lattice spacing. We also investigate the impact ofO(a)-improvement of the currents.

PhysicsCLs upper limitsLattice constant010308 nuclear & particles physicsQuantum electrodynamicsPhysicsQC1-9990103 physical sciencesCharge (physics)Fermion010306 general physicsNucleon01 natural sciencesEPJ Web of Conferences
researchProduct

K--pipi amplitudes from lattice QCD with a light charm quark.

2006

4 pages, 1 figure.-- PACS nrs.: 12.38.Gc, 13.25.Es, 11.30.Rd.-- ISI Article Identifier: 000244420700019.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-ph/0607220

QuarkPhysicsQuantum chromodynamicsParticle physicsChiral perturbation theoryTo-leading orderHigh Energy Physics::LatticeLattice field theoryHigh Energy Physics::PhenomenologyGeneral Physics and AstronomyFísica[PACS] Lattice QCD calculations[PACS] Chiral symmetries in particles and fieldsQuenched approximationLattice QCD[PACS] Hadronic decays of K mesonsCharm quarkHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticePionChiral perturbation theoryHigh Energy Physics::ExperimentWeak interactionsWilson fermionsPhysical review letters
researchProduct

Parton distributions and lattice QCD calculations: A community white paper

2018

Progress in particle and nuclear physics 100, 107 - 160 (2018). doi:10.1016/j.ppnp.2018.01.007

QuarkNuclear and High Energy PhysicsParticle physicsquark: distribution functiondata analysis methodHigh Energy Physics::LatticeLattice field theoryhadron: spinFOS: Physical sciencesparton: distribution functionPartonLattice QCD01 natural sciences530hard scatteringHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)benchmarkFactorization0103 physical sciencesquantum chromodynamicsquantum chromodynamics: factorizationddc:530010306 general physicsGlobal QCD fitsQuantum chromodynamicsPhysicspolarizationgluon: distribution function010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]High Energy Physics - Lattice (hep-lat)High Energy Physics::Phenomenologylattice field theory[ PHYS.HLAT ] Physics [physics]/High Energy Physics - Lattice [hep-lat]ObservableLattice QCDGluonHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph][ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentUnpolarized/polarized parton distribution functions (PDFs)
researchProduct

Anomalous magnetic moment of the muon: A hybrid approach

2017

A new QCD sum rule determination of the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, $a_{\mu}^{\rm hvp}$, is proposed. This approach combines data on $e^{+}e^{-}$ annihilation into hadrons, perturbative QCD and lattice QCD results for the first derivative of the electromagnetic current correlator at zero momentum transfer, $\Pi_{\rm EM}^\prime(0)$. The idea is based on the observation that, in the relevant kinematic domain, the integration kernel $K(s)$, entering the formula relating $a_{\mu}^{\rm hvp}$ to $e^{+}e^{-}$ annihilation data, behaves like $1/s$ times a very smooth function of $s$, the squared energy. We find an expression …

PhysicsQuantum chromodynamicsParticle physicsMuonAnnihilationAnomalous magnetic dipole moment010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Hadronhep-latFOS: Physical sciencesPerturbative QCDhep-phLattice QCD01 natural sciencesHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesHigh Energy Physics::ExperimentSum rule in quantum mechanics010306 general physicsPhysical Review D
researchProduct

Hadronic light-by-light scattering amplitudes from lattice QCD versus dispersive sum rules

2017

The hadronic contribution to the eight forward amplitudes of light-by-light scattering ($\gamma^*\gamma^*\to \gamma^*\gamma^*$) is computed in lattice QCD. Via dispersive sum rules, the amplitudes are compared to a model of the $\gamma^*\gamma^*\to {\rm hadrons}$ cross sections in which the fusion process is described by hadronic resonances. Our results thus provide an important test for the model estimates of hadronic light-by-light scattering in the anomalous magnetic moment of the muon, $a_\mu^{\rm HLbL}$. Using simple parametrizations of the resonance $M\to \gamma^*\gamma^*$ transition form factors, we determine the corresponding monopole and dipole masses by performing a global fit to …

Quantum chromodynamicsPhysicsParticle physicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physicsScatteringHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)HadronFOS: Physical sciencesLattice QCD01 natural sciences530High Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)PionLattice (order)0103 physical sciencesddc:530High Energy Physics::Experiment010306 general physics
researchProduct

LOW-ENERGY QCD II — STATUS OF LATTICE CALCULATIONS

2013

The current status of lattice calculations is reviewed, with a particular emphasis on the question whether lattice simulations have matured to a stage where there is full interaction with experiment. Particular examples include the hadron spectrum, mesonic form factors and decay constants, the axial charge of the nucleon, and the hadronic vacuum polarization contribution to the muon (g-2).

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsMuonNuclear TheoryHadronLattice field theoryGeneral Physics and AstronomyAstronomy and AstrophysicsLattice QCDHigh Energy Physics::ExperimentVacuum polarizationNuclear ExperimentNucleonLattice model (physics)Modern Physics Letters A
researchProduct

Relativistic corrections to the static potential at O(1/m) and O(1/m^2)

2007

We investigate the relativistic corrections to the static potential, i.e. the O(1/m) potential and the O(1/m^2) velocity-dependent potentials, in SU(3) lattice gauge theory. They are important ingredients of potential nonrelativistic QCD for heavy quarkonium. Utilizing the multi-level algorithm, we obtain remarkably clean signals of these potentials up to r=0.9 fm. We observe long range nonperturbative contributions to these corrections.

Quantum chromodynamicsPhysicsParticle physicsRange (particle radiation)Nuclear TheoryHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFOS: Physical sciencesQuarkoniumNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeLattice gauge theory
researchProduct

Two-flavour lattice QCD correlation functions in the deconfinement transition region

2013

We report on a lattice QCD calculation with two dynamical flavors of the isovector vector correlator in the high-temperature phase. We analyze the correlator in terms of the associated spectral function by performing a fit for the difference of the thermal and vacuum spectral functions, using also an exact sum rule that constrains this difference. Additonally we carry out a direct fit for the thermal spectral function, and obtain good agreement between the two analyses for frequencies below the two-pion threshold. Under the assumption that the spectral function is smooth in that region, we give an estimate of the electrical conductivity.

Quantum chromodynamicsPhysicsSpectral representationNuclear TheoryCondensed matter physicsHigh Energy Physics::LatticeLattice field theoryFlavourHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesLattice QCDDeconfinementNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)Color confinement
researchProduct

The anomalous magnetic moment of the muon in the Standard Model

2020

We are very grateful to the Fermilab Directorate and the Fermilab Theoretical Physics Department for their financial and logistical support of the first workshop of the Muon g -2 Theory Initiative (held near Fermilab in June 2017) [123], which was crucial for its success, and indeed for the successful start of the Initiative. Financial support for this workshop was also provided by the Fermilab Distinguished Scholars program, the Universities Research Association through a URA Visiting Scholar award, the Riken Brookhaven Research Center, and the Japan Society for the Promotion of Science under Grant No. KAKEHNHI-17H02906. We thank Shoji Hashimoto, Toru Iijima, Takashi Kaneko, and Shohei Nis…

Standard ModelNuclear Theorymagnetichigher-orderPhysics beyond the Standard ModelGeneral Physics and Astronomynucl-ex01 natural sciencesHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Subatomic Physicsquantum electrodynamics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Vacuum polarizationNuclear Experiment (nucl-ex)Nuclear Experimentfundamental constant: fine structurePhysicsQuantum chromodynamicsQEDAnomalous magnetic dipole momentnew physicsJ-PARC LabHigh Energy Physics - Lattice (hep-lat)Electroweak interactionlattice field theoryParticle Physics - Latticehep-phObservableHigh Energy Physics - PhenomenologyNuclear Physics - TheoryParticle Physics - ExperimentParticle physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]nucl-th530 Physicsdispersion relationg-2Lattice field theoryFOS: Physical scienceshep-latnonperturbative[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]530Muon magnetic momentNuclear Theory (nucl-th)High Energy Physics - Latticemuonquantum chromodynamics0103 physical sciencesddc:530Nuclear Physics - Experiment010306 general physicsactivity reportperturbation theoryParticle Physics - PhenomenologyMuonmuon: magnetic momentelectroweak interaction[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]hep-ex010308 nuclear & particles physicsvacuum polarization: hadronicHigh Energy Physics::Phenomenologyphoton photon: scatteringanomalous magnetic moment[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentPhysics Reports
researchProduct

The leading hadronic contribution to (g-2) of the muon: The chiral behavior using the mixed representation method

2015

We extend our analysis of the leading hadronic contribution to the anomalous magnetic moment of the muon using the mixed representation method to study its chiral behavior. We present results derived from local-conserved two-point lattice vector correlation functions, computed on a subset of light two-flavor ensembles made available to us through the CLS effort with pion masses as low as 190 MeV. The data is analyzed also using the more standard four-momentum method. Both methods are systematically compared as the calculations approach the physical point.

PhysicsPhysical pointParticle physicsMuonAnomalous magnetic dipole momentNuclear Theory010308 nuclear & particles physicsHadronHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciences01 natural sciencesNuclear Theory (nucl-th)High Energy Physics - PhenomenologyPionCLs upper limitsHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeLattice (order)0103 physical sciences010306 general physics
researchProduct

Fitting strategies to extract the axial charge of the nucleon from lattice QCD

2014

We report on a comparison of several fit methods used for the extraction of the nucleon axial charge gA from lattice QCD with two dynamical flavours of O(a) improved Wilson quarks. We use plateau fits, summed operator insertions (the summation method) and a new “midpoint” method to investigate contributions from excited states that affect the determination of gA. We also present a method to perform correlated fits when the standard estimator for the inverse of the covariance matrix becomes unstable.

QuarkPhysicsParticle physicsCovariance matrixHigh Energy Physics::LatticeOperator (physics)Quantum electrodynamicsEstimatorInverseCharge (physics)Lattice QCDNucleonProceedings of 31st International Symposium on Lattice Field Theory LATTICE 2013 — PoS(LATTICE 2013)
researchProduct

Twisted-mass reweighting for O(a) improved Wilson fermions

2011

We test the reweighting of the quark determinant of O(a) improved Wilson fermions in the domain-decomposed hybrid Monte-Carlo algorithm. Specifically, we implement a reweighting in a twisted-mass parameter proposed by Palombi and L\"uscher in $N_{\rm f}=2$ QCD. We find that at equal acceptance rate, the algorithm is significantly more stable on a $32\times64^3$ lattice upon switching on the reweighting parameter. At the same time, the reweighting factor does not fluctuate strongly and hence is under control. At equal statistics, the uncertainty on the pion correlator is comparable to the case of the standard, unreweighted algorithm.

High Energy Physics - LatticeHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciences
researchProduct

Nucleon isovector charges and twist-2 matrix elements with Nf=2+1 dynamical Wilson quarks

2019

We present results from a lattice QCD study of nucleon matrix elements at vanishing momentum transfer for local and twist-2 isovector operator insertions. Computations are performed on gauge ensembles with nonperturbatively improved Nf=2+1 Wilson fermions, covering four values of the lattice spacing and pion masses down to Mπ≈200 MeV. Several source-sink separations (typically ∼1.0 to ∼1.5 fm) allow us to assess excited-state contamination. Results on individual ensembles are obtained from simultaneous two-state fits across all observables and all available source-sink separations with the energy gap as a common fit parameter. Renormalization has been performed nonperturbatively using the R…

Physical Review
researchProduct

Implementation of the Neuberger-Dirac operator on GPUs

2010

Recent developments have shown that a lot can be gained for QCD simulations from GPU hardware. This can be exploited especially in the case of Ginsparg-Wilson fermions when the com putational costs are particularly high. In this work, we use the Neuberger-Dirac operator as our realisation of Ginsparg-Wilson fermions, which greatly facilitate lattice investigations of decays like $K \to \pi\pi$. We report on the ongoing study of our GPU implementation of the Neuberger-Dirac operator including the exact treatment of the low lying eigenmodes of the Wilson-Dirac operator. Our benchmarks show that we achieve speed-up factors of around 23 and 16 in single and double precision, respectively.

High Energy Physics - LatticeHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciences
researchProduct

The nucleon sigma terms with $N_f = 2 + 1$ O($a$)-improved Wilson fermions

2023

We present a lattice-QCD based analysis of the nucleon sigma terms using gauge ensembles with $N_f = 2 + 1$ flavors of ${\cal O}(a)$-improved Wilson fermions, with a complete error budget concerning excited-state contaminations, chiral extrapolation as well as finite-size and lattice spacing effects. We compute the sigma terms determined directly from the matrix elements of the scalar currents. For the pion nucleon sigma term, we obtain $\sigma_{\pi N} = (43.6\pm3.8)$ MeV, where the error includes all systematics. The tension with extractions based on dispersion theory persists at the 3-$\sigma$ level. For the strange sigma term, we obtain a non-zero value, $\sigma_s=(27.1\pm9.8)$ MeV.

Nuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeNuclear TheoryHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciences
researchProduct

Lattice study of semileptonic b-decays - (b)over-bar-]dl(nu)over-bar decays

1995

We present a study of semileptonic ($) over bar B --> Dl ($) over bar v decays in quenched lattice QCD through a calculation of the matrix element [D\($) over bar c gamma(mu)b\($) over bar B] on a 24(3) x 48 lattice at beta = 6.2, using an O(alpha)-improved fermion action. We perform the calculation for several values of the initial and final heavy-quark masses around the charm mass, and three values of the light-(anti)quark mass around the strange mass. Because the charm quark has a bare mass which is almost 1/3 the inverse lattice spacing, we study the ensuing mass-dependent discretization errors, and propose a procedure for subtracting at least some of them nonperturbatively. We extract …

High Energy Physics::LatticeHigh Energy Physics::PhenomenologyFísicaHigh Energy Physics::Experiment
researchProduct

Leading isospin breaking effects in the HVP contribution to $a_{\mu}$ and to the running of $\alpha$

2021

The 38th International Symposium on Lattice Field Theory, LATTICE2021, Zoom/Gather@Massachusetts Institute of Technology, USA, 26 Jul 2021 - 30 Jul 2021; Proceedings of Science / International School for Advanced Studies (LATTICE2021), 106 (2021). doi:10.22323/1.396.0106

fermion: WilsonWilson [fermion]muon: magnetic momentHigh Energy Physics::Latticevacuum polarization: hadronicHigh Energy Physics::Phenomenologylattice field theorynonperturbative530isospinHigh Energy Physics - Latticeelectromagnetic [coupling]coupling: electromagneticmagnetic moment [muon]quantum chromodynamicshadronic [vacuum polarization]quantum electrodynamicsddc:530High Energy Physics::Experimentcorrelation function
researchProduct

Leading hadronic contribution to (g−2)μ from lattice QCD with Nf=2+1 flavors of O(a) improved Wilson quarks

2019

The comparison of the theoretical and experimental determinations of the anomalous magnetic moment of the muon (g−2)μ constitutes one of the strongest tests of the Standard Model at low energies. We compute the leading hadronic contribution to (g−2)μ using lattice QCD simulations employing Wilson quarks. Gauge field ensembles at four different lattice spacings and several values of the pion mass down to its physical value are used. We apply the O(a) improvement program with two discretizations of the vector current to better constrain the approach to the continuum limit. The electromagnetic current correlators are computed in the time-momentum representation. In addition, we perform auxilia…

Computer Science::Digital LibrariesPhysical Review
researchProduct

Adler function and hadronic vacuum polarization from lattice vector correlators

2013

We study a representation of the hadronic vacuum polarization based on the time-momentum representation of the vector correlator. This representation suggests a way to compute the hadronic vacuum polarization and the associated Adler function for any value of virtuality, irrespective of the flavor structure of the current. We present results on both of these phenomenologically important functions, derived from local-conserved two-point lattice vector correlation functions, computed on a subset of light two-flavor ensembles made available to us through the CLS effort.

Nuclear Theory (nucl-th)High Energy Physics - LatticeNuclear TheoryHigh Energy Physics::PhenomenologyHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciences
researchProduct

Isovector Axial Vector Form Factors of the Nucleon from Lattice QCD with Nf=2+1 O(a)-improved Wilson Fermions

2021

We present the analysis of isovector axial vector nucleon form factors on a set of $N_f=2+1$ CLS ensembles with $\mathcal O(a)$-improved Wilson fermions and L\"uscher-Weisz gauge action. The set of ensembles covers a pion mass range of $130-353\,$MeV with lattice spacings between $0.05\,$fm and $0.09\,$fm. In particular, the set includes a $L/a=96$ ensemble at the physical pion mass. For the purpose of the form factor extraction, we employ both the summed operator insertion method (summation method) and explicit two-state fits in order to account for excited-state contributions to the nucleon correlation functions. To describe the $Q^{2}$-behavior of the form factors, we perform $z$-expansi…

High Energy Physics - LatticeHigh Energy Physics::LatticeNuclear TheoryHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciences
researchProduct

Isovector Axial Form Factor of the Nucleon from Lattice QCD

2022

The isovector axial form factor of the nucleon plays a key role in interpreting data from long-baseline neutrino oscillation experiments. We present a lattice QCD calculation of this form factor, introducing a new method to directly extract its z-expansion from lattice correlators. Our final parameterization of the form factor, which extends up to spacelike virtualities of 0.7 GeV^2 with fully quantified uncertainties, agrees with previous lattice calculations but is significantly less steep than neutrino-deuterium scattering data suggests.

High Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)530 PhysicsHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesddc:530530 Physik530
researchProduct

Lattice calculations of the leading hadronic contribution to (g-2)_mu

2012

We report on our ongoing project to calculate the leading hadronic contribution to the anomalous magnetic moment of the muon a_mu^HLO using two dynamical flavours of non-perturbatively O(a) improved Wilson fermions. In this study, we changed the vacuum polarisation tensor to a combination of local and point-split currents which significantly reduces the numerical effort. Partially twisted boundary conditions allow us to improve the momentum resolution of the vacuum polarisation tensor and therefore the determination of the leading hadronic contribution to (g-2)_mu. We also extended the range of ensembles to include a pion mass below 200 MeV which allows us to check the non-trivial chiral be…

High Energy Physics - LatticeHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesHigh Energy Physics::Experiment
researchProduct

Towards the N_f=2 deconfinement transition temperature with O(a) improved Wilson fermions

2010

A lot of effort in lattice simulations over the last years has been devoted to studies of the QCD deconfinement transition. Most state-of-the-art simulations use rooted staggered fermions, while Wilson fermions are affected by large systematic uncertainties, such as coarse lattices or heavy sea quarks. Here we report on an ongoing study of the transition, using two degenerate flavours of nonperturbatively $\Ord(a)$ improved Wilson fermions. We start with $N_{t}=12$ and 16 lattices and pion masses of 600 to 450 MeV, aiming at chiral and continuum limits with light quarks.

High Energy Physics - LatticeHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFOS: Physical sciences
researchProduct

The pion-nucleon sigma term with $N_f = 2 + 1$ O($a$)-improved Wilson fermions

2023

Proceedings of The 39th International Symposium on Lattice Field Theory — PoS(LATTICE2022)
researchProduct

Isovector Axial Vector Form Factors of the Nucleon from Lattice QCD with $N_{f}=2+1$ $\mathcal O(a)$-improved Wilson Fermions

2021

We present the analysis of isovector axial vector nucleon form factors on a set of $N_f=2+1$ CLS ensembles with $\mathcal O(a)$-improved Wilson fermions and Lüscher-Weisz gauge action. The set of ensembles covers a pion mass range of $130-353\,$MeV with lattice spacings between $0.05\,$fm and $0.09\,$fm. In particular, the set includes a $L/a=96$ ensemble at the physical pion mass. For the purpose of the form factor extraction, we employ both the summed operator insertion method (summation method) and explicit two-state fits in order to account for excited-state contributions to the nucleon correlation functions. To describe the $Q^{2}$-behavior of the form factors, we perform $z$-expansion…

High Energy Physics - Lattice (hep-lat)FOS: Physical sciences
researchProduct