Benchmark calculations of electromagnetic sum rules with a symmetry-adapted basis and hyperspherical harmonics
We demonstrate the ability to calculate electromagnetic sum rules with the \textit{ab initio} symmetry-adapted no-core shell model. By implementing the Lanczos algorithm, we compute non-energy weighted, energy weighted, and inverse energy weighted sum rules for electric monopole, dipole, and quadrupole transitions in $^4$He using realistic interactions. We benchmark the results with the hyperspherical harmonics method and show agreement within $2\sigma$, where the uncertainties are estimated from the use of the many-body technique. We investigate the dependence of the results on three different interactions, including chiral potentials, and we report on the $^4$He electric dipole polarizabi…