Interaction of microphysics and dynamics in a warm conveyor belt simulated with the ICON model
Abstract. The representation of warm conveyor belts (WCBs) in numerical weather prediction (NWP) models is important, as they are responsible for the major precipitation in extratropical cyclones and modulate the large-scale flow evolution. Their cross-isentropic ascent into the upper troposphere is influenced by latent heat release mostly, but not exclusively, from cloud formation whose representation in NWP models is associated with large uncertainties. The diabatic heating additionally modifies the potential vorticity (PV) distribution which influences the circulation. We analyse diabatic heating and associated PV rates from all physics processes, including microphysics, turbulence, conv…