0000000000620324

AUTHOR

Erik Cammeraat

The effects of land abandonment and long-term afforestation practices on the organic carbon stock and lignin content of Mediterranean humid mountain soils

Afforestation is an important strategy that can decrease atmospheric carbon by sequestering carbon in biomass and soil. In Spain, an active afforestation programme was adopted in the 1950s when the soil was severely eroded after widespread abandonment of arable land. The Araguás catchment (Central Spanish Pyrenees) is a good example of this programme because it was afforested with both Pinus sylvestris L. (PS) and Pinus nigra J.F.Arnold (PN). The soil organic carbon (SOC) stock and lignin content (based on the vanillyl, syringyl and cinnamyl contents) of these afforested soils were examined and compared to those of bare soil, secondary succession and meadow soils. Both the SOC stock and lig…

research product

Ecohydrological adaptation of soils following land abandonment in a semi-arid environment

Representative land use types were selected in southeast Spain to investigate the redistribution of soil water in relation to vegetation development and land abandonment.Simulated rainfall experiments were performed during 2 days on each of the four selected surfaces: ploughed, a 3-year fallow field, a 12-year abandoned field with shrubs and a semi-natural field with Stipa tenacissima tussocks. Each experiment consisted of five runs of artificial rain. Soil moisture dynamics were measured by time domain reflectometry (TDR), as well as runoff and ponding on the plot surface. Also the movement of the wetting front was measured after each run.On the ploughed field, ponding and local runoff wer…

research product

Soil and organic carbon redistribution in a recently burned Mediterranean hillslope affected by water erosion processes

Forest fires cause many changes in the physical, chemical and biological soil properties such as aggregation and soil organic carbon contents (SOC) as well as on soil hydrology and erosion processes. Most studies on post-fire soil erosion in Mediterranean environments have been plot-based and research at hillslope or broader scale is scarce. Understanding SOC nature, distribution and modifications, as produced by forest fires and erosion, has become crucial to model and define the role of soil erosion as source or sink of C, and to sustainably manage ecosystem services related to the soil resource. This research provides data about the loss and redistribution of soil and SOC in a Mediterran…

research product

Emerging contaminants related to the occurrence of forest fires in the Spanish Mediterranean

Forest fires can be a source of contamination because, among others, of the use of chemicals to their extinction (flame retardants, FRs), or by the production of Polycyclic Aromatic Hydrocarbons (PAHs) derived from high temperature alteration of organic matter. Up to our knowledge, this study is the first to assess the direct (PAHs 16 on the USA EPA's priority list), and indirect [tri- to hepta- brominated diphenyl ethers (PBDEs), organophosphorus flame retardants (PFRs) and perfluoroalkyl substances (PFASs)] contamination related to forest fires. The abundance and distribution of these contaminants were monitored on two Mediterranean hillslopes, one burned and one unburned, near Azuébar (S…

research product