0000000000620326

AUTHOR

Maurits Evers

Study of fusion reactions forming Cf nuclei

The formation of a compound nucleus in different projectile and target combinations is a powerful method for investigating the fusion process. Recently, the dominance of quasi-fission over fusion-fission has been inferred for 34 S+208 Pb in comparison to 36 S+206 Pb; both reactions lead to the compound nucleus 242 Cf* .The mass and angle distributions of the fission fragments from these reactions were studied in order to further investigate the presence of quasi-fission.

research product

Ca48+Bk249Fusion Reaction Leading to ElementZ=117: Long-Livedα-DecayingDb270and Discovery ofLr266

The superheavy element with atomic number Z=117 was produced as an evaporation residue in the 48Ca+249Bk fusion reaction at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. The radioactive decay of evaporation residues and their α-decay products was studied using a detection setup that allowed measuring decays of single atomic nuclei with half-lives between sub-μs and a few days. Two decay chains comprising seven α decays and a spontaneous fission each were identified and are assigned to the isotope 294-117 and its decay products. A hitherto unknown α-decay branch in 270Db (Z=105) was observed, which populated the new isotope 266Lr (Z=103). The identification of the long-liv…

research product

Experimental study of the quasifission, fusion-fission, and de-excitation of Cf compound nuclei

Background: The fusion-evaporation reaction at energies around the Coulomb barrier is presently the only way to produce the heaviest elements. However, formation of evaporation residues is strongly hindered due to the competing fusion-fission and quasifission processes. Presently, a full understanding of these processes and their relationships has not been reached.Purpose: This work aims to use new fission measurements and existing evaporation residue and fission excitation function data for reactions forming Cf isotopes to investigate the dependence of the quasifission probability and characteristics on the identities of the two colliding nuclei in heavy element formation reactions.Method:…

research product

Search for elements 119 and 120

A search for production of the superheavy elements with atomic numbers 119 and 120 was performed in the 50Ti+249Bk and 50Ti+249Cf fusion-evaporation reactions, respectively, at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. Over four months of irradiation, the 249Bk target partially decayed into 249Cf, which allowed for a simultaneous search for both elements. Neither was detected at cross-section sensitivity levels of 65 and 200 fb for the 50Ti+249Bk and 50Ti+249Cf reactions, respectively, at a midtarget beam energy of Elab=281.5 MeV. The nonobservation of elements 119 and 120 is discussed within the concept of fusion-evaporation reactions including various theoretical pr…

research product

Fusion reaction Ca48+Bk249 leading to formation of the element Ts ( Z=117 )

The heaviest currently known nuclei, which have up to 118 protons, have been produced in 48Ca induced reactions with actinide targets. Among them, the element tennessine (Ts), which has 117 protons, has been synthesized by fusing 48Ca with the radioactive target 249Bk, which has a half-life of 327 d. The experiment was performed at the gas-filled recoil separator TASCA. Two long and two short α decay chains were observed. The long chains were attributed to the decay of 294Ts. The possible origin of the short-decay chains is discussed in comparison with the known experimental data. They are found to fit with the decay chain patterns attributed to 293Ts. The present experimental results confi…

research product