0000000000620684

AUTHOR

Nicola Bellomo

Boundary value steady solutions of a class of hydrodynamic models for vehicular traffic flow

This paper deals with the solution of a boundary value problem related to a steady nonuniform description of a class of traffic flow models. The models are obtained by the closure of the mass conservation equation with a phenomenological relation linking the local mass velocity to the local density. The analysis is addressed to define the proper framework toward the identification of the parameter characterizing the model. The last part of the paper develops a critical analysis also addressed to the design of new traffic flow models.

research product

New horizons for fundamental physics with LISA

K. G. Arun et al.

research product

From the kinetic theory of active particles to the modeling of social behaviors and politics

This paper deals with the modeling of complex social systems by methods of the mathematical kinetic theory for active particles. Specifically, a recent model by the last two authors is analyzed from the social sciences point of view. The model shows, despite its simplicity, some interesting features. In particular, this paper investigates the ability of the model to describe how a social politics and the disposable overall wealth may have a relevant influence towards the trend of the wealth distribution. The paper also outlines various research perspectives.

research product

On the modeling of nonlinear interactions in large complex systems

Abstract This work deals with the modeling of large systems of interacting entities in the framework of the mathematical kinetic theory for active particles. The contents are specifically focused on the modeling of nonlinear interactions which is one of the most important issues in the mathematical approach to modeling and simulating complex systems, and which includes a learning–hiding dynamics. Applications are focused on the modeling of complex biological systems and on immune competition.

research product