0000000000620728
AUTHOR
G. T. Ewan
Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory
Observations of neutral current neutrino interactions on deuterium in the Sudbury Neutrino Observatory are reported. Using the neutral current, elastic scattering, and charged current reactions and assuming the standard 8B shape, the electron-neutrino component of the 8B solar flux is 1.76 +/-0.05(stat.)+/-0.09(syst.) x10^6/(cm^2 s), for a kinetic energy threshold of 5 MeV. The non-electron neutrino component is 3.41+/-0.45(stat.)+0.48,-0.45(syst.) x10^6/(cm^2 s), 5.3 standard deviations greater than zero, providing strong evidence for solar electron neutrino flavor transformation. The total flux measured with the NC reaction is 5.09 +0.44,-0.43(stat.)+0.46,-0.43(syst.)x10^6/(cm^2 s), consi…
Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters
The Sudbury Neutrino Observatory (SNO) has measured day and night solar neutrino energy spectra and rates. For charged current events, assuming an undistorted $^8$B spectrum, the night minus day rate is $14.0% \pm 6.3% ^{+1.5}_{-1.4}%$ of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the $\nu_e$ asymmetry is found to be $7.0% \pm 4.9% ^{+1.3}_{-1.2}%$. A global solar neutrino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the Large Mixing Angle (LMA) solution.
Intense mass-separated beams of halogens and beta-delayed neutron emission from heavy bromine isotopes
Improved production yields of short-lived halogens were obtained from a ThO2 target, irradiated with 600 MeV protons, in combination with a negative surface ionization source. Mass-separated samples were studied by decay spectroscopy. Production yields of radioactive isotopes of chlorine, bromine, iodine and astatine are presented. Half-lives and relative neutron emission probabilities were measured for the heavy bromine isotopes89−92Br. Normalizing to earlier publishedPn values for89Br, the results are:89Br (4.30±0.14s,P n =13.6±0.8%),90Br (1.92±0.06s,P n =24.8±1.5%),91Br (0.53 ±0.03 s,P n =30.1 ±2.1%), and92Br (0.31 ±0.02 s,P n =34.6±2.5%). Energy spectra ofβ-delayed neutrons were measure…