Nonradial Hormander algebras of several variables and convolution operators
A characterization of the closed principal ideals in nonradial Hormander algebras of holomorphic functions of several variables in terms of the behaviour of the generator is obtained. This result is applied to study the range of convolution operators and ultradifferential operators on spaces of quasianalytic functions of Beurling type. Contrary to what is known to happen in the case of non-quasianalytic functions, an ultradistribution on a space of quasianalytic functions is constructed such that the range of the operator does not contain the real analytic functions. Let u, v : R → R be continuous, non-negative and even functions which are increasing on the positive real numbers. We assume …