Discrete wavelet transform implementation in Fourier domain for multidimensional signal
Wavelet transforms are often calculated by using the Mallat algorithm. In this algorithm, a signal is decomposed by a cascade of filtering and downsampling operations. Computing time can be important but the filtering operations can be speeded up by using fast Fourier transform (FFT)-based convolutions. Since it is necessary to work in the Fourier domain when large filters are used, we present some results of Fourier-based optimization of the sampling operations. Acceleration can be obtained by expressing the samplings in the Fourier domain. The general equations of the down- and upsampling of digital multidimensional signals are given. It is shown that for special cases such as the separab…