0000000000622128
AUTHOR
Maria Eduarda Silva
Multivariate and Multiscale Complexity of Long-Range Correlated Cardiovascular and Respiratory Variability Series
Assessing the dynamical complexity of biological time series represents an important topic with potential applications ranging from the characterization of physiological states and pathological conditions to the calculation of diagnostic parameters. In particular, cardiovascular time series exhibit a variability produced by different physiological control mechanisms coupled with each other, which take into account several variables and operate across multiple time scales that result in the coexistence of short term dynamics and long-range correlations. The most widely employed technique to evaluate the dynamical complexity of a time series at different time scales, the so-called multiscale …
Multiscale Information Storage of Linear Long-Range Correlated Stochastic Processes
Information storage, reflecting the capability of a dynamical system to keep predictable information during its evolution over time, is a key element of intrinsic distributed computation, useful for the description of the dynamical complexity of several physical and biological processes. Here we introduce a parametric approach which allows one to compute information storage across multiple timescales in stochastic processes displaying both short-term dynamics and long-range correlations (LRC). Our analysis is performed in the popular framework of multiscale entropy, whereby a time series is first "coarse grained" at the chosen timescale through low-pass filtering and downsampling, and then …
Assessing Transfer Entropy in cardiovascular and respiratory time series: A VARFI approach
In the study of complex biomedical systems represented by multivariate stochastic processes, such as the cardiovascular and respiratory systems, an issue of great relevance is the description of the system dynamics spanning multiple temporal scales. Recently, the quantification of multiscale complexity based on linear parametric models, incorporating autoregressive coefficients and fractional integration, encompassing short term dynamics and long-range correlations, was extended to multivariate time series. Within this Vector AutoRegressive Fractionally Integrated (VARFI) framework formalized for Gaussian processes, in this work we propose to estimate the Transfer Entropy, or equivalently G…
Multiscale partial information decomposition of dynamic processes with short and long-range correlations: theory and application to cardiovascular control.
Abstract Objective. In this work, an analytical framework for the multiscale analysis of multivariate Gaussian processes is presented, whereby the computation of Partial Information Decomposition measures is achieved accounting for the simultaneous presence of short-term dynamics and long-range correlations. Approach. We consider physiological time series mapping the activity of the cardiac, vascular and respiratory systems in the field of Network Physiology. In this context, the multiscale representation of transfer entropy within the network of interactions among Systolic arterial pressure (S), respiration (R) and heart period (H), as well as the decomposition into unique, redundant and s…
Assessing Transfer Entropy in cardiovascular and respiratory time series: A VARFI approach
In the study of complex biomedical systems represented by multivariate stochastic processes, such as the cardiovascular and respiratory systems, an issue of great relevance is the description of the system dynamics spanning multiple temporal scales. Recently, the quantification of multiscale complexity based on linear parametric models, incorporating autoregressive coefficients and fractional integration, encompassing short term dynamics and long-range correlations, was extended to multivariate time series. Within this Vector AutoRegressive Fractionally Integrated (VARFI) framework formalized for Gaussian processes, in this work we propose to estimate the Transfer Entropy, or equivalently G…
Assessing Transfer Entropy in cardiovascular and respiratory time series under long-range correlations.
Heart Period (H) results from the activity of several coexisting control mechanisms, involving Systolic Arterial Pressure (S) and Respiration (R), which operate across multiple time scales encompassing not only short-term dynamics but also long-range correlations. In this work, multiscale representation of Transfer Entropy (TE) and of its decomposition in the network of these three interacting processes is obtained by extending the multivariate approach based on linear parametric VAR models to the Vector AutoRegressive Fractionally Integrated (VARFI) framework for Gaussian processes. This approach allows to dissect the different contributions to cardiac dynamics accounting for the simultane…
Vector Autoregressive Fractionally Integrated Models to Assess Multiscale Complexity in Cardiovascular and Respiratory Time Series
Cardiovascular variability is the result of the activity of several physiological control mechanisms, which involve different variables and operate across multiple time scales encompassing short term dynamics and long range correlations. This study presents a new approach to assess the multiscale complexity of multivariate time series, based on linear parametric models incorporating autoregressive coefficients and fractional integration. The approach extends to the multivariate case recent works introducing a linear parametric representation of multiscale entropy, and is exploited to assess the complexity of cardiovascular and respiratory time series in healthy subjects studied during postu…