0000000000623642

AUTHOR

A.a. Kwiatkowski

Charge breeding rare isotopes for high precision mass measurements: challenges and opportunities

Ion charge breeding for Penning-trap mass spectrometry has been established as providing a precision increase that scales linearly with the charge state of the ion. Fast and efficient charge breeding is a precondition for the application of this approach to rare isotopes. However, in view of low yields and short half-lives the precision boost is partly compromised by unavoidable ion losses inherent to the charge breeding process. The mass spectrometer TRIUMFs ion trap for atomic and nuclear science is pioneering this field by coupling a Penning trap and an electron beam ion trap to the rare-isotope beam facility ISAC at TRIUMF. Here we present simulations that calculate and maximize the eff…

research product

New determination of double-β-decay properties in48Ca: High-precisionQββ-value measurement and improved nuclear matrix element calculations

We report a direct measurement of the Q-value of the neutrinoless double-beta-decay candidate 48Ca at the TITAN Penning-trap mass spectrometer, with the result that Q = 4267.98(32) keV. We measured the masses of both the mother and daughter nuclides, and in the latter case found a 1 keV deviation from the literature value. In addition to the Q-value, we also present results of a new calculation of the neutrinoless double-beta-decay nuclear matrix element of 48Ca. Using diagrammatic many-body perturbation theory to second order to account for physics outside the valence space, we constructed an effective shell-model double-beta-decay operator, which increased the nuclear matrix element by ab…

research product

Nuclear moments and charge radii of neutron-deficient francium isotopes and isomers

Collinear laser fluorescence spectroscopy has been performed on the ground and isomeric states of $^{204,206}\mathrm{Fr}$ in order to determine their spins, nuclear moments, and changes in mean-squared charge radii. A new experimental technique has been developed as part of this work which much enhances the data collection rate while maintaining the high resolution. This has permitted the extension of this study to the two isomeric states in each nucleus. The investigation of nuclear $g$ factors and mean-squared charge radii indicates that the neutron-deficient Fr isotopes lie in a transitional region from spherical towards more collective structures.

research product