0000000000623972
AUTHOR
Stefania Fortino
X-ray micro-tomography based FEM modelling of hygroexpansion in PLA composites reinforced with birch pulp fibres
This article presents a microscale modelling approach coupled with X-ray computed micro-tomography for the evaluation of material properties of polylactic acid (PLA) reinforced by birch pulp fibers under the effect of moisture. The results in terms of elastic moduli and hygroexpansion deformation were found in good agreement with the measurements taken at different levels of water uptake.
Time-resolved X-ray microtomographic measurement of water transport in wood-fibre reinforced composite material
Natural fibre composites are prone to absorb moisture from the environment which may lead to dimensional changes, mold growth, degradation of mechanical properties or other adverse effects. In this work we develop a method for direct non-intrusive measurement of local moisture content inside a material sample. The method is based on X-ray microtomography, digital image correlation and image analysis. As a first application of the method we study axial transport of water in a cylindrical polylactic acid/birch pulp composite material sample with one end exposed to water. Based on the results, the method seems to give plausible estimates of water content profiles inside the cylindrical sample.…