0000000000624466
AUTHOR
Richard Laucournet
Coated interconnects development for high temperature water vapour electrolysis: Study in anode atmospher
International audience; High temperature water vapour electrolysis (HTE) is an efficient technology for hydrogen production. In this context, a commercial stainless steel, K41X (AISI 441), was chosen as interconnect. In a previous paper, the high temperature corrosion and the electrical conductivity were evaluated in both anode (O-2-H2O) and cathode (H-2-H2O) atmosphere at 800 degrees C. In O-2-H2O atmosphere, the formation of a thin chromia protective layer was observed. Nevertheless, the ASR parameter measured was higher than the maximum accepted value. These results, in addition with chromium evaporation measurements, proved that the K41X alloy is not suitable for HTE interconnect applic…
Effect of coatings on long term behaviour of a commercial stainless steel for solid oxide electrolyser cell interconnect application in H2 /H2O atmosphere
Abstract K41X (AISI 441) stainless steel evidenced a high electrical conductivity after 3000 h ageing in H 2 /H 2 O side when used as interconnect for solid oxide electrolyser cells (SOEC) working at 800 °C. Perovskite (La 1 − x Sr x MnO 3 − δ ) and spinel (Co 3 O 4 ) oxides coatings were applied on the surface of the ferritic steel for ageing at 800 °C for 3000 h. Both coatings improved the behaviour of the steel and give interesting opportunities to use the K41X steel as interconnect for hydrogen production via high temperature steam electrolysis. Co 3 O 4 reduced into Co leading to a very good Area Specific Resistance (ASR) parameter, 0.038 Ω cm 2 . Despite a good ASR (0.06 Ω cm 2 ), La …