Path Planning for Perception-Driven Obstacle-Aided Snake Robot Locomotion
Development of snake robots have been motivated by the ability of snakes to move efficiently in unstructured and cluttered environments. A snake robot has the potential to utilise obstacles for generating locomotion, in contrast to wheeled robots which are unable to move efficiently in rough terrain. In this paper, we propose a local path planning algorithm for snake robots based on obstacle-aided locomotion (OAL). An essential feature in OAL is to determine suitable push-points in the environment that the snake robot can use for locomotion. The proposed method is based on a set of criteria for evaluating a path, and is a novel contribution of this paper. We focus on local path planning and…