Quantum versus Classical Online Streaming Algorithms with Advice
We consider online algorithms with respect to the competitive ratio. Here, we investigate quantum and classical one-way automata with non-constant size of memory (streaming algorithms) as a model for online algorithms. We construct problems that can be solved by quantum online streaming algorithms better than by classical ones in a case of logarithmic or sublogarithmic size of memory, even if classical online algorithms get advice bits. Furthermore, we show that a quantum online algorithm with a constant number of qubits can be better than any deterministic online algorithm with a constant number of advice bits and unlimited computational power.