0000000000625976

AUTHOR

Roberto De Pietri

Prospects for the inference of inertial modes from hypermassive neutron stars with future gravitational-wave detectors

Some recent, long-term numerical simulations of binary neutron star mergers have shown that the long-lived remnants produced in such mergers might be affected by convective instabilities. Those would trigger the excitation of inertial modes, providing a potential method to improve our understanding of the rotational and thermal properties of neutron stars through the analysis of the modes' imprint in the late post-merger gravitational-wave signal. In this paper we assess the detectability of those modes by injecting numerically generated post-merger waveforms into colored Gaussian noise of second-generation and future detectors. Signals are recovered using BayesWave, a Bayesian data-analysi…

research product

Numerical-relativity simulations of long-lived remnants of binary neutron star mergers

We analyze the properties of the gravitational wave signal emitted after the merger of a binary neutron star system when the remnant survives for more than a 80 ms (and up to 140ms). We employ four different piecewise polytropic equations of state supplemented by an ideal fluid thermal component. We find that the post-merger phase can be subdivided into three phases: an early post-merger phase (where the quadrupole mode and a few subdominant features are active), the intermediate post-merger phase (where only the quadrupole mode is active) and the late post-merger phase (where convective instabilities trigger inertial modes). The inertial modes have frequencies somewhat smaller than the qua…

research product

Convective Excitation of Inertial Modes in Binary Neutron Star Mergers

We present the first very long-term simulations (extending up to ~140 ms after merger) of binary neutron star mergers with piecewise polytropic equations of state and in full general relativity. Our simulations reveal that at a time of 30-50 ms after merger, parts of the star become convectively unstable, which triggers the excitation of inertial modes. The excited inertial modes are sustained up to several tens of milliseconds and are potentially observable by the planned third-generation gravitational-wave detectors at frequencies of a few kilohertz. Since inertial modes depend on the rotation rate of the star and they are triggered by a convective instability in the postmerger remnant, t…

research product

Gravitational waves from oscillating accretion tori: Comparison between different approaches

Quasi-periodic oscillations of high density thick accretion disks orbiting a Schwarzschild black hole have been recently addressed as interesting sources of gravitational waves. The aim of this paper is to compare the gravitational waveforms emitted from these sources when computed using (variations of) the standard quadrupole formula and gauge-invariant metric perturbation theory. To this goal we evolve representative disk models using an existing general relativistic hydrodynamics code which has been previously employed in investigations of such astrophysical systems. Two are the main results of this work: First, for stable and marginally stable disks, no excitation of the black hole quas…

research product