Lattice dynamics of wurtzite and rocksalt AlN under high pressure: Effect of compression on the crystal anisotropy of wurtzite-type semiconductors
Raman spectra of aluminum nitride (AlN) under pressure have been measured up to $25\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$, i.e., beyond the onset of the wurtzite-to-rocksalt phase transition around $20\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$. The experimental pressure coefficients for all the Raman-active modes of the wurtzite phase are reported and compared to those obtained from ab initio lattice dynamical calculations, as well as to previous experimental and theoretical results. The pressure coefficients of all the Raman-active modes in wurtzite-type semiconductors (AlN, GaN, InN, ZnO, and BeO), as well as the relatively low bulk modulus and phase transition pressure in wurtzite AlN, a…
Pressure measurements of TO-phonon anharmonicity in isotopic ZnS
We have measured the dependence on pressure of the line-widths of the TO and LO Raman phonons of β-ZnS. In order to enhance the phenomena observed, and to eliminate possible effects of isotopic disorder, we have measured a nearly isotopically pure crystal, 68 Zn 32 S. The strongly structured pressure effects observed are interpreted on the basis of anharmonic decay and the corresponding two-phonon density of states.
Raman scattering inβ-ZnS
The first- and second-order Raman spectra of cubic ZnS $(\ensuremath{\beta}$-ZnS, zinc-blende) are revisited. We consider spectra measured with two laser lines for samples with different isotopic compositions, aiming at a definitive assignment of the observed Raman features and the mechanisms which determine the linewidth of the first order TO and LO Raman phonons. For this purpose, the dependence of the observed spectra on temperature and pressure is investigated. The linewidth of the TO phonons is found to vary strongly with pressure and isotopic masses. Pressure runs, up to 15 GPa, were performed at 16 K and 300 K. Whereas well-defined TO Raman phonons were observed at low temperature in…
InN thin film lattice dynamics by grazing incidence inelastic x-ray scattering.
Achieving comprehensive information on thin film lattice dynamics so far has eluded well established spectroscopic techniques. We demonstrate here the novel application of grazing incidence inelastic x-ray scattering combined with ab initio calculations to determine the complete elastic stiffness tensor, the acoustic and low-energy optic phonon dispersion relations of thin wurtzite indium nitride films. Indium nitride is an especially relevant example, due to the technological interest for optoelectronic and solar cell applications in combination with other group III nitrides.