0000000000628004
AUTHOR
Shih Chen Shi
UV light induced luminescence processes in AlN nanotips and ceramics
UV induced luminescence properties of AlN (Eg = 6.2 eV) have been studied for AlN nanotips and AlN ceramics, using methods of photoluminescence, optically stimulated luminescence and thermoluminescence. In both types of objects the main luminescence band, which appears in prompt and stimulated emission spectra around 400 nm, arises due to presence of oxygen-related defects. The main difference between AlN nanotips and AlN ceramics is observed in excitation spectra and TL properties. Basing on the experimental results it is assumed that several different energy transfer mechanisms occur in AlN. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Luminescence properties of wurtzite AlN nanotips
The optical properties of aluminum nitride nanotips (AlNNTs) synthesized via vapor transport and condensation process have been studied by cathodoluminescence, photoluminescence (PL), thermoluminescence (TL), and UV absorption measurements. Two defect related transitions around 2.1 and 3.4eV and an excitonic feature at 6.2eV were identified. Compared to the AlN macropowders, the AlNNTs showed a blueshift (+0.2eV) of the ∼3.2eV peak. Analysis of both PL and TL excitation measurements indicated the existence of subband gap multiple energy levels in AlNNTs. A significant TL intensity even at 145°C suggests possible ultraviolet detector and dosimetric applications of these AlNNTs.