0000000000628120

AUTHOR

M.a Fütterer

Further improvements of the water-cooled Pb–17Li blanket

Abstract The water-cooled lithium–lead (WCLL) blanket is based on reduced-activation ferritic–martensitic steel as the structural material, the liquid alloy Pb–17Li as breeder and neutron multiplier, and water at typical PWR conditions as coolant. It was developed for DEMO specifications and shall be tested in ITER. In 1999, a reactor parameter optimization was performed in the EU which yielded improved specifications of what could be an attractive fusion power plant. Compared to DEMO, such a power reactor would be different in lay-out, size and performance, thus requiring to better exploit the potential of the WCLL blanket concept in conjunction with a water-cooled divertor. Several new ap…

research product

On the use of tin–lithium alloys as breeder material for blankets of fusion power plants

Abstract Tin–lithium alloys have several attractive thermo-physical properties, in particular high thermal conductivity and heat capacity, that make them potentially interesting candidates for use in liquid metal blankets. This paper presents an evaluation of the advantages and drawbacks caused by the substitution of the currently employed alloy lead–lithium (Pb–17Li) by a suitable tin–lithium alloy: (i) for the European water-cooled Pb–17Li (WCLL) blanket concept with reduced activation ferritic–martensitic steel as the structural material; (ii) for the European self-cooled TAURO blanket with SiCf/SiC as the structural material. It was found that in none of these blankets Sn–Li alloys woul…

research product

Water-cooled Pb–17Li test blanket module for ITER: Impact of the structural material grade on the neutronic responses

Abstract The Water-Cooled Lithium Lead (WCLL) DEMO blanket is one of the two EU lines to be further developed with the aim of manufacturing by 2010 a Test Blanket Module for ITER (TBM). In this paper results of a 3D-Monte Carlo neutronic analysis of the TBM design are reported. A fully 3D heterogeneous model of the WCLL–TBM has been inserted into an existing ITER model accounting for a proper D–T neutron source. The structural material assumed for the calculations was martensitic 9% Cr steel code named Z 10 CDV Nb 9-1. Results have been compared with those obtained using MANET. The main nuclear responses of the TBM have been determined, such as detailed power deposition density, material da…

research product

Potential and limits of water-cooled Pb–17Li blankets and divertors for a fusion power plant

Abstract Blankets and divertors are key components of a fusion power plant. They have a large impact on the overall plant design, its performance and availability, and on the cost of electricity. The water-cooled Pb–17Li (WCLL) blanket uses reduced activation ferritic–martensitic steel as structural material. It was previously validated under numerous aspects such as TBR, mechanical and thermo-mechanical stability, thermal–hydraulics, MHD, safety and others. This was done assuming the specifications for a European DEMOnstration reactor which were fixed back in 1989. A WCLL blanket would best be combined with a water-cooled divertor so that a single coolant could be used for the entire react…

research product