0000000000631481

AUTHOR

Alan S. Cigoli

showing 8 related works from this author

Fibred-categorical obstruction theory

2022

Abstract We set up a fibred categorical theory of obstruction and classification of morphisms that specialises to the one of monoidal functors between categorical groups and also to the Schreier-Mac Lane theory of group extensions. Further applications are provided to crossed extensions and crossed bimodule butterflies, with in particular a classification of non-abelian extensions of unital associative algebras in terms of Hochschild cohomology.

Pure mathematicsFibrationCohomology Fibration Category of fractions Schreier-Mac Lane theorem Obstruction theory Crossed extension Hochschild cohomologyFibered knotMathematics::Algebraic TopologyCohomologyHochschild cohomologyMorphismMathematics::K-Theory and HomologyMathematics::Category TheoryCategorical variableMathematicsSchreier-Mac Lane theoremAlgebra and Number TheoryFunctorCategory of fractionsGroup (mathematics)Crossed extensionSettore MAT/01 - Logica MatematicaObstruction theoryCohomologyCategory of fractions; Cohomology; Crossed extension; Fibration; Hochschild cohomology; Obstruction theory; Schreier-Mac Lane theoremSettore MAT/02 - AlgebraBimoduleObstruction theory
researchProduct

Extension theory and the calculus of butterflies

2016

Abstract This paper provides a unified treatment of two distinct viewpoints concerning the classification of group extensions: the first uses weak monoidal functors, the second classifies extensions by means of suitable H 2 -actions. We develop our theory formally, by making explicit a connection between (non-abelian) G-torsors and fibrations. Then we apply our general framework to the classification of extensions in a semi-abelian context, by means of butterflies [1] between internal crossed modules. As a main result, we get an internal version of Dedecker's theorem on the classification of extensions of a group by a crossed module. In the semi-abelian context, Bourn's intrinsic Schreier–M…

TorsorCrossed moduleContext (language use)01 natural sciencesCohomologyCohomology; Extension; Fibrations; Obstruction theory; Schreier-mac lane theorem; TorsorsExtensionMathematics::Category Theory0103 physical sciences0101 mathematicsConnection (algebraic framework)MathematicsAlgebra and Number TheoryFunctorGroup (mathematics)010102 general mathematicsTorsorsExtension (predicate logic)Obstruction theorySchreier-mac lane theoremCohomologyFibrationsAlgebraSettore MAT/02 - AlgebraSchreier–Mac Lane theoremSettore MAT/03 - Geometria010307 mathematical physicsObstruction theory
researchProduct

Peiffer product and peiffer commutator for internal pre-crossed modules

2017

In this work we introduce the notions of Peiffer product and Peiffer commutator of internal pre-crossed modules over a fixed object B, extending the corresponding classical notions to any semi-abelian category C. We prove that, under mild additional assumptions on C, crossed modules are characterized as those pre-crossed modules X whose Peiffer commutator 〈X, X〉 is trivial. Furthermore we provide suitable conditions on C (fulfilled by a large class of algebraic varieties, including among others groups, associative algebras, Lie and Leibniz algebras) under which the Peiffer product realizes the coproduct in the category of crossed modules over B.

Large classPure mathematicssemi-abelian categoryCrossed module01 natural scienceslaw.inventionMathematics (miscellaneous)law0103 physical sciencesFOS: MathematicsSemi-abelian categoryCategory Theory (math.CT)0101 mathematicsAlgebraic numberAssociative propertyMathematicsPeiffer commutator010102 general mathematicsCoproductCommutator (electric)Mathematics - Category Theorycrossed moduleProduct (mathematics)010307 mathematical physicscrossed module; Peiffer commutator; semi-abelian category
researchProduct

Obstruction theory in action accessible categories

2013

Abstract We show that, in semi-abelian action accessible categories (such as the categories of groups, Lie algebras, rings, associative algebras and Poisson algebras), the obstruction to the existence of extensions is classified by the second cohomology group in the sense of Bourn. Moreover, we describe explicitly the obstruction to the existence of extensions in the case of Leibniz algebras, comparing Bourn cohomology with Loday–Pirashvili cohomology of Leibniz algebras.

Algebra and Number TheoryGroup (mathematics)Accessible categoryAction accessible categorieObstruction theoryMathematics::Algebraic TopologyAction accessible categoriesCohomologyAction (physics)Action accessible categories; Leibniz algebras; Obstruction theoryLeibniz algebraAlgebraSettore MAT/02 - AlgebraMathematics::K-Theory and HomologyMathematics::Category TheoryLie algebraObstruction theoryLeibniz algebrasAssociative propertyObstruction theorymatMathematics
researchProduct

Discrete and Conservative Factorizations in Fib(B)

2021

AbstractWe focus on the transfer of some known orthogonal factorization systems from$$\mathsf {Cat}$$Catto the 2-category$${\mathsf {Fib}}(B)$$Fib(B)of fibrations over a fixed base categoryB: the internal version of thecomprehensive factorization, and the factorization systems given by (sequence of coidentifiers, discrete morphism) and (sequence of coinverters, conservative morphism) respectively. For the class of fibrewise opfibrations in$${\mathsf {Fib}}(B)$$Fib(B), the construction of the latter two simplify to a single coidentifier (respectively coinverter) followed by an internal discrete opfibration (resp. fibrewise opfibration in groupoids). We show how these results follow from thei…

Coidentifier; Coinverter; Factorization system; Internal fibrationPhysicsSequenceAlgebra and Number TheoryOrthogonal factorizationGeneral Computer ScienceInternal versionFactorization systemTheoretical Computer ScienceCombinatoricsSettore MAT/02 - AlgebraCoinverterTransfer (group theory)MorphismFactorizationInternal fibrationCoidentifierFixed baseApplied Categorical Structures
researchProduct

A Push Forward Construction and the Comprehensive Factorization for Internal Crossed Modules

2014

In a semi-abelian category, we give a categorical construction of the push forward of an internal pre-crossed module, generalizing the pushout of a short exact sequence in abelian categories. The main properties of the push forward are discussed. A simplified version is given for action accessible categories, providing examples in the categories of rings and Lie algebras. We show that push forwards can be used to obtain the crossed module version of the comprehensive factorization for internal groupoids.

Exact sequenceAlgebra and Number TheoryGeneral Computer ScienceSemi-abelian categoryAccessible categoryPushoutCrossed moduleCrossed modulecrossed module push forward comprehensive factorizationTheoretical Computer ScienceAlgebraSettore MAT/02 - AlgebraComprehensive factorizationFactorizationMathematics::Category TheoryLie algebraPush forwardAbelian groupComprehensive factorization; Crossed module; Push forward; Semi-abelian categoryCategorical variableMathematicsApplied Categorical Structures
researchProduct

Fibered aspects of Yoneda's regular span

2018

In this paper we start by pointing out that Yoneda's notion of a regular span $S \colon \mathcal{X} \to \mathcal{A} \times \mathcal{B}$ can be interpreted as a special kind of morphism, that we call fiberwise opfibration, in the 2-category $\mathsf{Fib}(\mathcal{A})$. We study the relationship between these notions and those of internal opfibration and two-sided fibration. This fibrational point of view makes it possible to interpret Yoneda's Classification Theorem given in his 1960 paper as the result of a canonical factorization, and to extend it to a non-symmetric situation, where the fibration given by the product projection $Pr_0 \colon \mathcal{A} \times \mathcal{B} \to \mathcal{A}$ i…

Pure mathematicsSpan (category theory)FibrationAlgebraic structureGeneral MathematicsCohomology; Crossed extension; Fibration; Regular spanFibered knot01 natural sciencesCohomologyMorphismMathematics::Category Theory0103 physical sciencesFOS: MathematicsClassification theoremCategory Theory (math.CT)0101 mathematicsMathematicsCrossed extension010102 general mathematicsFibrationMathematics - Category TheoryMathematics - Rings and AlgebrasSettore MAT/02 - AlgebraTransfer (group theory)Regular spanRings and Algebras (math.RA)Product (mathematics)010307 mathematical physics
researchProduct

On Pseudofunctors Sending Groups to 2-Groups

2023

For a category B with finite products, we first characterize pseudofunctors from B to Cat whose corresponding opfibration is cartesian monoidal. Among those, we then characterize the ones which extend to pseudofunctors from internal groups to 2-groups. If B is additive, this is the case precisely when the corresponding opfibration has groupoidal fibres.

Settore MAT/02 - AlgebraGeneral MathematicsMathematics::Category TheoryFOS: Mathematicsinternal groupsMathematics - Category TheoryCategory Theory (math.CT)2-groupsPseudofunctorSettore MAT/04 - Matematiche Complementari2-groups; internal groups; monoidal opfibration; Pseudofunctor18A40 18C40 18D30 18G45 18M05monoidal opfibration
researchProduct