0000000000631539

AUTHOR

Guido H. Wabnitz

0000-0001-5101-9885

Cytotoxicity of tumor antigen specific human T cells is unimpaired by arginine depletion.

Tumor-growth is often associated with the expansion of myeloid derived suppressor cells that lead to local or systemic arginine depletion via the enzyme arginase. It is generally assumed that this arginine deficiency induces a global shut-down of T cell activation with ensuing tumor immune escape. While the impact of arginine depletion on polyclonal T cell proliferation and cytokine secretion is well documented, its influence on chemotaxis, cytotoxicity and antigen specific activation of human T cells has not been demonstrated so far. We show here that chemotaxis and early calcium signaling of human T cells are unimpaired in the absence of arginine. We then analyzed CD8(+) T cell activation…

research product

Arginine deficiency leads to impaired cofilin dephosphorylation in activated human T lymphocytes

The amino acid arginine is fundamentally involved in the regulation of the immune response during infection, inflammatory diseases and tumor growth. Arginine deficiency (e.g. due to the myeloid cell enzyme arginase) inhibits proliferation and effector functions of activated T lymphocytes. Here, we studied intracellular mechanisms mediating this suppression of human T lymphocytes. Our proteomic analysis revealed an impaired dephosphorylation of the actin-binding protein cofilin upon T-cell activation in the absence of arginine. We show that this correlates with alteration of actin polymerization and impaired accumulation of CD2 and CD3 in the evolving immunological synapse in T cell-antigen …

research product

NF-κB inducing kinase (NIK) is an essential post-transcriptional regulator of T-cell activation affecting F-actin dynamics and TCR signaling

NF-κB inducing kinase (NIK) is the key protein of the non-canonical NF-κB pathway and is important for the development of lymph nodes and other secondary immune organs. We elucidated the specific role of NIK in T cells using T-cell specific NIK-deficient (NIKΔT) mice. Despite showing normal development of lymphoid organs, NIKΔT mice were resistant to induction of CNS autoimmunity. T cells from NIKΔT mice were deficient in late priming, failed to up-regulate T-bet and to transmigrate into the CNS. Proteomic analysis of activated NIK-/- T cells showed de-regulated expression of proteins involved in the formation of the immunological synapse: in particular, proteins involved in cytoskeleton dy…

research product