0000000000633859

AUTHOR

Nair Olguín

showing 1 related works from this author

Methylmercury-induced developmental toxicity is associated with oxidative stress and cofilin phosphorylation. Cellular and human studies

2017

Environmental exposure to methylmercury (MeHg) during development is of concern because it is easily incorporated in children’s body both pre- and post-natal, it acts at several levels of neural pathways (mitochondria, cytoskeleton, neurotransmission) and it causes behavioral impairment in child. We evaluated the effects of prolonged exposure to 10–600 nM MeHg on primary cultures of mouse cortical (CCN) and of cerebellar granule cells (CGC) during their differentiation period. In addition, it was studied if prenatal MeHg exposure correlated with altered antioxidant defenses and cofilin phosphorylation in human placentas (n = 12) from the INMA cohort (Spain). Exposure to MeHg for 9 days in v…

0301 basic medicineDevelopmental DisabilitiesGlutathione reductaseCiencias de la SaludMitochondrionMETHYLMERCURYToxicologymedicine.disease_causeProtein CarbonylationMiceCytosolMITOCHONDRIAPregnancyPhosphorylationOXIDATIVE STRESSCells Culturedchemistry.chemical_classificationNeuronsbiologyGeneral NeuroscienceGlutathione peroxidaseCOFILINBrainMethylmercuryEnvironmental exposureCofilinMethylmercury CompoundsMitochondrial Proton-Translocating ATPasesGlutathioneCell biologyMitochondriaGlutathione ReductaseActin Depolymerizing FactorsCofilinPhosphorylationFemaleHuman placentaactinCortactinCIENCIAS MÉDICAS Y DE LA SALUDmacromolecular substancesACTIN03 medical and health sciencesCultured neuronsmedicineAnimalsHumansCULTURED NEURONSGlutathione PeroxidaseSalud OcupacionalHUMAN PLACENTAMolecular biology030104 developmental biologychemistryAnimals NewbornOxidative stressbiology.proteinOxidative stress
researchProduct