0000000000633959
AUTHOR
Antonio Sanchez-puente
Classical resolution of black hole singularities in arbitrary dimension
A metric-affine approach is employed to study higher-dimensional modified gravity theories involving different powers and contractions of the Ricci tensor. It is shown that the field equations are \emph{always} second-order, as opposed to the standard metric approach, where this is only achieved for Lagrangians of the Lovelock type. We point out that this property might have relevant implications for the AdS/CFT correspondence in black hole scenarios. We illustrate these aspects by considering the case of Born-Infeld gravity in $d$ dimensions, where we work out exact solutions for electrovacuum configurations. Our results put forward that black hole singularities in arbitrary dimensions can…
Geometric aspects of charged black holes in Palatini theories
Charged black holes in gravity theories in the Palatini formalism present a number of unique properties. Their innermost structure is topologically nontrivial, representing a wormhole supported by a sourceless electric flux. For certain values of their effective mass and charge curvature divergences may be absent, and their event horizon may also disappear yielding a remnant. We give an overview of the mathematical derivation of these solutions and discuss their geodesic structure and other geometric properties.
Accelerated observers and the notion of singular spacetime
Geodesic completeness is typically regarded as a basic criterion to determine whether a given spacetime is regular or singular. However, the principle of general covariance does not privilege any family of observers over the others and, therefore, observers with arbitrary motions should be able to provide a complete physical description of the world. This suggests that in a regular spacetime, all physically acceptable observers should have complete paths. In this work we explore this idea by studying the motion of accelerated observers in spherically symmetric spacetimes and illustrate it by considering two geodesically complete black hole spacetimes recently described in the literature. We…
Geodesic completeness in a wormhole spacetime with horizons
The geometry of a spacetime containing a wormhole generated by a spherically symmetric electric field is investigated in detail. These solutions arise in high-energy extensions of General Relativity formulated within the Palatini approach and coupled to Maxwell electrodynamics. Even though curvature divergences generically arise at the wormhole throat, we find that these spacetimes are geodesically complete. This provides an explicit example where curvature divergences do not imply spacetime singularities.
Impact of curvature divergences on physical observers in a wormhole space-time with horizons
The impact of curvature divergences on physical observers in a black hole space-time which, nonetheless, is geodesically complete is investigated. This space-time is an exact solution of certain extensions of General Relativity coupled to Maxwell's electrodynamics and, roughly speaking, consists on two Reissner-Nordstr\"{o}m (or Schwarzschild or Minkowski) geometries connected by a spherical wormhole near the center. We find that, despite the existence of infinite tidal forces, causal contact is never lost among the elements making up the observer. This suggests that curvature divergences may not be as pathological as traditionally thought.