0000000000634259
AUTHOR
Mark Rijpkema
89 Zr-Immuno-Positron Emission Tomography in Oncology: State-of-the-Art 89 Zr Radiochemistry
Contains fulltext : 181624.pdf (Publisher’s version ) (Open Access) Immuno-positron emission tomography (immunoPET) with (89)Zr-labeled antibodies has shown great potential in cancer imaging. It can provide important information about the pharmacokinetics and tumor-targeting properties of monoclonal antibodies and may help in anticipating on toxicity. Furthermore, it allows accurate dose planning for individualized radioimmunotherapy and may aid in patient selection and early-response monitoring for targeted therapies. The most commonly used chelator for (89)Zr is desferrioxamine (DFO). Preclinical studies have shown that DFO is not an ideal chelator because the (89)Zr-DFO complex is partly…
Site-Specific Dual-Labeling of a VHH with a Chelator and a Photosensitizer for Nuclear Imaging and Targeted Photodynamic Therapy of EGFR-Positive Tumors
Simple Summary Variable domains of heavy chain only antibodies are small proteins that can be used for tumor imaging and therapy upon conjugation of functional groups. As frequently used random conjugation techniques can decrease binding to the target of interest, site-specific conjugation of these functional groups is preferred. Here, we optimized site-specific conjugation of both a chelator for binding of a radiometal and a photosensitizer to epidermal growth factor receptor (EGFR) binding VHH 7D12. We characterized this dual-labeled VHH for nuclear imaging and targeted photodynamic therapy of EGFR-expressing tumors. Abstract Variable domains of heavy chain only antibodies (VHHs) are valu…