0000000000634353

AUTHOR

Ofer Neufeld

0000-0002-5477-2108

Time- and angle-resolved photoelectron spectroscopy of strong-field light-dressed solids: prevalence of the adiabatic band picture

In recent years, strong-field physics in condensed-matter was pioneered as a novel approach for controlling material properties through laser-dressing, as well as for ultrafast spectroscopy via nonlinear light-matter interactions (e.g. harmonic generation). A potential controversy arising from these advancements is that it is sometimes vague which band-picture should be used to interpret strong-field experiments: the field-free bands, the adiabatic (instantaneous) field-dressed bands, Floquet bands, or some other intermediate picture. We here try to resolve this issue by performing 'theoretical experiments' of time- and angle-resolved photoelectron spectroscopy (Tr-ARPES) for a strong-field…

research product

Attosecond magnetization dynamics in non-magnetic materials driven by intense femtosecond lasers

Irradiating solids with ultrashort laser pulses is known to initiate femtosecond timescale magnetization dynamics. However, sub-femtosecond spin dynamics have not yet been observed or predicted. Here, we explore ultrafast light-driven spin dynamics in a highly non-resonant strong-field regime. Through state-of-the-art ab-initio calculations, we predict that a non-magnetic material can be transiently transformed into a magnetic one via dynamical extremely nonlinear spin-flipping processes, which occur on attosecond timescales and are mediated by a combination of multi-photon and spin-orbit interactions. These are non-perturbative non-resonant analogues to the inverse Faraday effect that buil…

research product

Are there universal signatures of topological phases in high harmonic generation? Probably not

High harmonic generation (HHG) has developed in recent years as a promising tool for ultrafast materials spectroscopy. At the forefront of these advancements, several works proposed to use HHG as an all-optical probe for topology of quantum matter by identifying its signatures in the emission spectra. However, it remains unclear if such spectral signatures are indeed a robust and general approach for probing topology. To address this point, we perform here a fully ab-initio study of HHG from prototypical two-dimensional topological insulators in the Kane-Mele quantum spin-Hall and anomalous-Hall phases. We analyze the spectra and previously proposed topological signatures by comparing HHG f…

research product

Probing phonon dynamics with multidimensional high harmonic carrier-envelope-phase spectroscopy

We explore pump-probe high harmonic generation (HHG) from monolayer hexagonal-Boron-Nitride, where a terahertz pump excites coherent optical phonons that are subsequently probed by an intense infrared pulse that drives HHG. We find, through state-of-the-art ab-initio calculations, that the structure of the emission spectrum is attenuated by the presence of coherent phonons, and is no longer comprised of discrete harmonic orders, but rather of a continuous emission in the plateau region. The HHG yield strongly oscillates as a function of the pump-probe delay, corresponding to ultrafast changes in the lattice such as bond compression or stretching. We further show that in the regime where the…

research product

Light-Driven Extremely Nonlinear Bulk Photogalvanic Currents

We predict the generation of bulk photocurrents in materials driven by bichromatic fields that arc circularly polarized and corotating. The nonlinear photocurrents have a fully controllable directionality and amplitude without requiring carrier-envelope-phase stabilization or few-cycle pulses, and can be generated with photon energies much smaller than the band gap (reducing heating in the photoconversion process). We demonstrate with ab initio calculations that the photocurrent generation mechanism is universal and arises in gaped materials (Si, diamond, MgO, hBN), in semimetals (graphene), and in two- and three-dimensional systems. Photocurrents are shown to rely on sub-laser-cycle asymme…

research product

Strong chiral dichroism and enantiopurification in above-threshold ionization with locally chiral light

We derive here a highly selective photoelectron-based chirality-sensing technique that utilizes “locally chiral” laser pulses. We show that this approach results in strong chiral discrimination, where the standard forwards/backwards asymmetry of photoelectron circular dichroism (PECD) is lifted. The resulting dichroism is larger and more robust than conventional PECD (especially in the high-energy part of the spectrum), is found in all hemispheres, and is not symmetric or antisymmetric with respect to any symmetry operator. Remarkably, chiral dichroism of up to 10% survives in the angularly integrated above-threshold ionization (ATI) spectra, and chiral dichroism of up to 5% survives in the…

research product