0000000000634455

AUTHOR

Trevor J. Pugh

0000-0002-8073-5888

showing 1 related works from this author

Activation of the PD-1 Pathway Contributes to Immune Escape in EGFR-Driven Lung Tumors

2013

Abstract The success in lung cancer therapy with programmed death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between EGF receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, CTL antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased CTLs and increased markers of T-cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T-cell function and lowering the levels of tumor-promoting cytokines. Expression of m…

Lung NeoplasmsT-LymphocytesT cellProgrammed Cell Death 1 ReceptorMice TransgenicLymphocyte ActivationB7-H1 AntigenArticleCell LineProinflammatory cytokineMiceCarcinoma Non-Small-Cell LungTumor MicroenvironmentmedicineAnimalsHumansCytotoxic T cellEpidermal growth factor receptorLung cancerEGFR inhibitorsTumor microenvironmentbiologyOncogenesmedicine.diseaseErbB ReceptorsGene Expression Regulation NeoplasticMice Inbred C57BLmedicine.anatomical_structureOncologyTumor EscapeImmunologyCancer researchbiology.proteinCytokinesTumor EscapeSignal TransductionCancer Discovery
researchProduct