0000000000634473

AUTHOR

Nadia Pisanti

Detecting mutations by eBWT

In this paper we develop a theory describing how the extended Burrows-Wheeler Transform (eBWT) of a collection of DNA fragments tends to cluster together the copies of nucleotides sequenced from a genome G. Our theory accurately predicts how many copies of any nucleotide are expected inside each such cluster, and how an elegant and precise LCP array based procedure can locate these clusters in the eBWT. Our findings are very general and can be applied to a wide range of different problems. In this paper, we consider the case of alignment-free and reference-free SNPs discovery in multiple collections of reads. We note that, in accordance with our theoretical results, SNPs are clustered in th…

research product

Variable-order reference-free variant discovery with the Burrows-Wheeler Transform

Abstract Background In [Prezza et al., AMB 2019], a new reference-free and alignment-free framework for the detection of SNPs was suggested and tested. The framework, based on the Burrows-Wheeler Transform (BWT), significantly improves sensitivity and precision of previous de Bruijn graphs based tools by overcoming several of their limitations, namely: (i) the need to establish a fixed value, usually small, for the order k, (ii) the loss of important information such as k-mer coverage and adjacency of k-mers within the same read, and (iii) bad performance in repeated regions longer than k bases. The preliminary tool, however, was able to identify only SNPs and it was too slow and memory con…

research product

SNPs detection by eBWT positional clustering

Sequencing technologies keep on turning cheaper and faster, thus putting a growing pressure for data structures designed to efficiently store raw data, and possibly perform analysis therein. In this view, there is a growing interest in alignment-free and reference-free variants calling methods that only make use of (suitably indexed) raw reads data. We develop the positional clustering theory that (i) describes how the extended Burrows–Wheeler Transform (eBWT) of a collection of reads tends to cluster together bases that cover the same genome position (ii) predicts the size of such clusters, and (iii) exhibits an elegant and precise LCP array based procedure to locate such clusters in the e…

research product