0000000000634791

AUTHOR

Zhibing Li

showing 12 related works from this author

Study ofJ/ψ→pp¯andJ/ψ→nn¯

2012

The decays J/psi -> p (p) over bar and J/psi -> n (n) over bar have been investigated with a sample of 225.2 x 10(6) J/psi events collected with the BESIII detector at the BEPCII e(+)e(-) collider. The branching fractions are determined to be B(J/psi -> p (p) over bar) = (2.112 +/- 0.004 +/- 0.031 x 10(-3) and B(J/psi -> n (n) over bar) =(2.07 +/- 0.01 +/- 0.17) x 10(-3). Distributions of the angle theta between the proton or antineutron and the beam direction are well described by the form 1 + alpha cos(2)theta, and we find alpha = 0.595 +/- 0.012 +/- 0.015 for J/psi -> p (p) over bar and alpha = 0.50 +/- 0.04 +/- 0.21 for J/psi -> n (n) over bar. Our branching- fraction results suggest a …

BaryonPhysicsNuclear and High Energy PhysicsQCD sum rulesProtonElectron–positron annihilationPhase angleAnalytical chemistryHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNucleonAntineutronBar (unit)Physical Review D
researchProduct

Calibration strategy of the JUNO experiment

2021

We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. [Figure not available: see fulltext.]

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsmeasurement methodsscintillation counter: liquidenergy resolutionFOS: Physical sciencesPhotodetectorScintillator53001 natural sciencesNOHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)hal-03022811PE2_2Optics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Calibrationlcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAstrophysiqueJiangmen Underground Neutrino ObservatoryPhysicsJUNOliquid [scintillation counter]010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsLinearityInstrumentation and Detectors (physics.ins-det)calibrationNeutrino Detectors and Telescopes (experiments)lcsh:QC770-798High Energy Physics::ExperimentNeutrinobusinessEnergy (signal processing)Journal of High Energy Physics
researchProduct

Observation of Two NewN*Resonances in the Decayψ(3686)→pp¯π0

2013

Based on 106 x 10(6)psi(3686) events collected with the BESIII detector at the BEPCII facility, a partial wave analysis of psi(3686) -> p (p) over bar pi(0) is performed. The branching fraction of this channel has been determined to be B psi(3686) -> p (p) over bar pi(0) = (1.65 +/- 0.03 +/- 0.15) x 10(-4). In this decay, 7 N* intermediate resonances are observed. Among these, two new resonances, N(2300) and N(2570) are significant, one 1/2(+) resonance with a mass of 2300(-30-0)(+40+109) MeV/c(2) and width of 340(-30-58)(+30+110) MeV/c(2), and one 5/2(-) resonance with a mass of 2570(-10-10)(+19+34) MeV/c(2) and width of 250(-24-21)(+14+69) MeV/c(.)(2) For the remaining 5 N* intermediate r…

BaryonNuclear physicsPhysicsBranching fractionElectron–positron annihilationPartial wave analysisAnalytical chemistryGeneral Physics and AstronomyResonanceBar (unit)Physical Review Letters
researchProduct

Determination of the number of J/psi events with J/psi -> inclusive decays

2012

The number of J/psi events collected with the BESIII detector at the BEPC II from June 12 to July 28, 2009 is determined to be (225.3 +/- 2.8) x 10(6) using J/psi -> inclusive events, where the uncertainty is the systematic error and the statistical one is negligible.

PhysicsSystematic errorNuclear and High Energy PhysicsElectron–positron annihilationDetectorMonte Carlo methodBESIIIInclusive eventsAstronomy and AstrophysicsJ/ψ→Nuclear physicsBESIII detector; Inclusive events; J/ψ→; Number of J/ψ eventsNumber of J/ψ eventsJ/psi -> inclusive eventsnumber of J/psi eventsBESIII detectorInstrumentationChinese physics c
researchProduct

Radioactivity control strategy for the JUNO detector

2021

JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsNuclear engineeringMonte Carlo methodControl (management)measurement methodsFOS: Physical sciencesQC770-798Scintillator7. Clean energy01 natural sciencesNOPE2_2Nuclear and particle physics. Atomic energy. Radioactivity0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Sensitivity (control systems)010306 general physicsPhysicsJUNOliquid [scintillation counter]010308 nuclear & particles physicsbusiness.industryDetectorSettore FIS/01 - Fisica Sperimentaleradioactivity [background]suppression [background]Instrumentation and Detectors (physics.ins-det)Monte Carlo [numerical calculations]Nuclear powerthreshold [energy]sensitivityNeutrino Detectors and Telescopes (experiments)GEANTNeutrinobusinessEnergy (signal processing)
researchProduct

Observation of the doubly radiative decay η′→γγπ0

2017

Based on a sample of 1.31 billion J/psi events collected with the BESIII detector, we report the study of the doubly radiative decay eta' -> gamma gamma pi(0) for the first time, where the eta' meson is produced via the J/psi -> gamma eta' decay. The branching fraction of eta' -> gamma gamma pi(0) inclusive decay is measured to be B(eta' -> gamma gamma pi(0))(Incl) = (3.20 +/- 0.07(stat) +/- 0.23(sys)) x 10(-3), while the branching fractions of the dominant process eta' -> gamma omega and the non-resonant component are determined to be B(eta' -> gamma omega) x B(omega -> gamma pi(0)) = (23.7 +/- 1.4(stat) +/- 1.8(sys)) x 10(-4) and B(eta' -> gamma gamma pi(0))(NR) = (6.16 +/- 0.64(stat) +/-…

PhysicsMeson010308 nuclear & particles physicsBranching fractionAstrophysics::High Energy Astrophysical PhenomenaElectron–positron annihilationRadiative decay01 natural sciencesOmegaGamma gammaNuclear physics0103 physical sciencesPiHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsPhysical Review D
researchProduct

First Observation of theM1Transitionψ(3686)→γηc(2S)

2012

Using a sample of 106×10(6) ψ(3686) events collected with the BESIII detector at the BEPCII storage ring, we have made the first measurement of the M1 transition between the radially excited charmonium S-wave spin-triplet and the radially excited S-wave spin-singlet states: ψ(3686)→γη(c)(2S). Analyses of the processes ψ(3686)→γη(c)(2S) with η(c)(2S)→K(S)(0)K(±)π(∓) and K(+)K(-)π(0) give an η(c)(2S) signal with a statistical significance of greater than 10 standard deviations under a wide range of assumptions about the signal and background properties. The data are used to obtain measurements of the η(c)(2S) mass (M(η(c)(2S))=3637.6±2.9(stat)±1.6(syst) MeV/c(2)), width (Γ(η(c)(2S))=16.9±6.4(…

PhysicsBranching fractionElectron–positron annihilationExcited stateAnalytical chemistryGeneral Physics and AstronomyPhysical Review Letters
researchProduct

Neutrino Physics with JUNO

2016

The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plan…

Particle physicsSterile neutrinoNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsGeoneutrinoreactor neutrino experimentPhysics::Instrumentation and DetectorsSolar neutrinomedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciences7. Clean energy01 natural sciencesNOHigh Energy Physics - Experimentneutrino astronomyHigh Energy Physics - Experiment (hep-ex)neutrino physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530neutrino mass hierarchy reactor liquid scintillator010306 general physicsJiangmen Underground Neutrino Observatorymedia_commonPhysics010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyneutrino physicInstrumentation and Detectors (physics.ins-det)Universereactor neutrino experimentslarge scintillator detectors; neutrino astronomy; neutrino physics; reactor neutrino experiments; Nuclear and High Energy PhysicsSupernovalarge scintillator detectors13. Climate actionPhysics::Space Physicslarge scintillator detectorHigh Energy Physics::ExperimentNeutrinoreactor neutrino experiments; large scintillator detectors; neutrino physics; neutrino astronomy
researchProduct

Search for a light exotic particle inJ/ψradiative decays

2012

Using a data sample containing 1.06x10^8 psi' events collected with the BESIII detector at the BEPCII electron-positron collider, we search for a light exotic particle X in the process psi' -> pi^+ pi^- J/psi, J/psi -> gamma X, X -> mu^+ mu^-. This light particle X could be a Higgs-like boson A^0, a spin-1 U boson, or a pseudoscalar sgoldstino particle. In this analysis, we find no evidence for any mu^+mu^- mass peak between the mass threshold and 3.0 GeV/c^2. We set 90%-confidence-level upper limits on the product-branching fractions for J/psi -> gamma A^0, A^0 -> mu^+ mu^- which range from 4x10^{-7} to 2.1x10^{-5}, depending on the mass of A^0, for M(A^0)<3.0 GeV/c^2. On…

BOSONSPhysicsNuclear and High Energy PhysicsParticle physicsRange (particle radiation)ENERGIESElectron–positron annihilationGRAVITINOFOS: Physical sciencesSupersymmetryHigh Energy Physics - Experimentlaw.inventionNuclear physicsPseudoscalarHigh Energy Physics - Experiment (hep-ex)lawSgoldstinoRadiative transferHigh Energy Physics::ExperimentColliderBosonPhysical Review D
researchProduct

Future Physics Programme of BESIII

2020

There has recently been a dramatic renewal of interest in the subjects of hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like $XYZ$ states at BESIII and $B$ factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related $X(1835)$ meson state at BESIII, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESIII over the remaining lifetime of BEPCII operation. This survey will help in the optimization of the data-taking pla…

Nuclear and High Energy PhysicsParticle physicsX(1835)charmed mesonMesoncharmoniumNuclear TheoryFOS: Physical sciences7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNOSubatomär fysikHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Hadron physicsHadron spectroscopySubatomic Physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Charm (quantum number)charmed baryontau010306 general physicsNuclear ExperimentInstrumentationanti-p pactivity reportPhysicsthreshold: enhancementLuminosity (scattering theory)BES010308 nuclear & particles physicshadron spectroscopyHigh Energy Physics::PhenomenologyThe RenaissanceAstronomy and AstrophysicsBeijing Stor: upgradeBaryonHigh Energy Physics - PhenomenologyUpgradeexperimental equipment[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentluminosity: high
researchProduct

The Design and Sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS

2021

The European physical journal / C 81(11), 973 (2021). doi:10.1140/epjc/s10052-021-09544-4

Liquid scintillatorPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and Detectorsscintillation counter: liquidmeasurement methodsQC770-798Astrophysics01 natural sciencesthorium: nuclidedesign [detector]neutrinoRadioactive purityPhysicsLow energy neutrinoJUNOliquid [scintillation counter]biologySettore FIS/01 - Fisica SperimentaleDetectorInstrumentation and Detectors (physics.ins-det)3. Good healthQB460-466Physics::Space Physicsnuclide [uranium]FOS: Physical sciencesScintillatornuclide [thorium]530NONuclear physicsPE2_2uranium: nuclideNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesddc:530Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsJUNO neutrino physics liquid scintillatorEngineering (miscellaneous)background: radioactivitydetector: designMeasurement method010308 nuclear & particles physicsradioactivity [background]biology.organism_classificationsensitivityHigh Energy Physics::ExperimentReactor neutrinoOsiris
researchProduct

JUNO sensitivity to low energy atmospheric neutrino spectra

2021

Atmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about cosmic rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric $\nu_e$ and $\nu_\mu$ fluxes is presented in this paper. In this study, a sample of atmospheric neutrino Monte Carlo events has been generated, starting from theoretical models, and then pro…

Physics and Astronomy (miscellaneous)Physics::Instrumentation and Detectorsscintillation counter: liquidenergy resolutionAtmospheric neutrinoQC770-798Astrophysics7. Clean energy01 natural sciencesneutrino: fluxHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)particle source [neutrino]neutrinoneutrino: atmosphere[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Cherenkovneutrino/e: particle identificationenergy: low [neutrino]Jiangmen Underground Neutrino ObservatoryPhysicsJUNOphotomultiplierliquid [scintillation counter]primary [neutrino]neutrino: energy spectrumDetectoroscillation [neutrino]neutrinosMonte Carlo [numerical calculations]atmosphere [neutrino]QB460-466observatorycosmic radiationComputer Science::Mathematical Softwareproposed experimentNeutrinonumerical calculations: Monte CarloComputer Science::Machine LearningParticle physicsdata analysis methodAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayScintillatorComputer Science::Digital LibrariesNOStatistics::Machine LearningPE2_2neutrino: primaryneutrino: spectrumNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesddc:530structure010306 general physicsNeutrino oscillationEngineering (miscellaneous)Cherenkov radiationparticle identification [neutrino/mu]Scintillationneutrino/mu: particle identificationflavordetectorparticle identification [neutrino/e]010308 nuclear & particles physicsneutrino: energy: lowHigh Energy Physics::Phenomenologyspectrum [neutrino]resolutionenergy spectrum [neutrino]flux [neutrino]neutrino: particle source13. Climate actionHigh Energy Physics::Experimentneutrino: oscillationneutrino detector
researchProduct