6533b83afe1ef96bd12a78fe
RESEARCH PRODUCT
First Observation of theM1Transitionψ(3686)→γηc(2S)
C. Q. FengL. ZhangZ. JiaoZ. A. ZhuB. Q. WangM. BertaniY. MaC. P. ShenC. P. ShenB. ZhongJ. Q. ZhangZhe SunX. S. QinC. NicholsonQingming MaZhiqing LiuY. B. ChenFeng LiuChang LiuJ. Z. ZhangM. UllrichX. D. RuanH. H. LiuT. R. ZhangK. WangKun LiuShisong FangF. F. AnY. H. GuanX. H. LiuX. H. MoM. H. GuL. YuX. R. LiQ. J. WangJ. P. LiuY. P. GuoJ. K. C. LeungG. LiA. Q. GuoJianping ZhengW. L. YuanLing ZhaoH. LoehnerJ. B. JiaoM. LvJ. G. ZhangX. T. LiaoY. P. ChuJunguang LuC. F. QiaoJ. Z. BaiY. T. GuJ. C. ChenLei ZhaoZ. Y. HeG. ChelkovG. ChelkovYang YangC. L. MaH. XuF. C. MaI. BoykoY. ZengJ. ZhuangL. H. WuM. X. LuoY. H. YanZ. NingX. L. WangX. S. JiangJ. S. HuangC. GengA. ZhemchugovA. ZhemchugovRoy A. BriereD. H. ZhangH. B. LiuS. L. LiR. B. FerroliC. S. JiT. YangL. Y. DongL. K. JiaI. DenysenkoE. BogerE. BogerB. X. ZhangY. J. MaoNiklaus BergerS. PacettiZhiqiang LiuMiao HeQ. AnB. X. YuD. P. JinW. KuehnJ. F. HuX. L. LiS. X. WuB. S. ZouT. J. MinXiujuan TangX. N. LiBrent J. LiuM. DestefanisFeng LiG. M. XuH. M. HuH. MaoHaiping PengX. CaiY. T. LiangZhihao XuChuan LiuZong-ping ZhengZ. H. QinJ. H. ZouXie-yan SongW. X. GongG. M. HuangD. J. AmbroseChang-zheng YuanP. WeidenkaffJ. ZhangM. KavatsyukA. SarantsevA. SarantsevTao LuoB. WangZ. Y. DengDaniel P Cronin-hennessyXingtao HuangA. DenigQ. OuyangSai-juan ChenK. LiMichael WernerE. H. ThorndikeChun S. J. PunV. BytevLi YanH. L. MaC. MotzkoS. L. OlsenY. QinM. ShaoXian Lun ZhuC. D. FuN. Yu. MuchnoiY. NefedovD. H. SunHang LiuJ. S. LangeL. B. GuoM. G. ZhaoT. C. ZhaoJ. L. PingX. D. SunR. PolingG. R. LuX. F. WangHuihui LiuFu-hu LiuY. H. ZhangQ. W. LuH. X. YangK. J. ZhuJingwei ZhaoA. CalcaterraX. W. ZhuO. BondarenkoYu-bin LiuH. H. ZhangJiangchao LiZ. G. ZhaoYuanbo ChenQ. J. XuJ. G. MesschendorpS. B. LiuJoong-won ParkQ. G. WenXuantong ZhangC. X. LiuL. FavaY. X. YangS. H. ZhangH. L. DaiJie YuD. H. WeiYao WangY. YuanQ. L. XiuE. PrencipeZ. Y. WangM. MaggioraLei LiG. X. SunW. G. LiM. WangS. X. DuGuo-ming ChenZ. L. HouY. B. LiuZ. P. ZhangK. J. ZhuB. D. SchaeferY. BanS. G. WangJ. SchulzeM. Y. DongX. L. JiS. P. YuS. P. WenY. F. LiangY. Z. SunQ. A. MalikS. H. ZhuJ. M. BianZ. H. AnB. SpruckZ. XueT. MaQ. JiC. X. YuY. DingHaosheng ChenTalib HussainP. L. WangG. F. XuS. QianJ. F. SunM. R. ShepherdF. FeldbauerHai LiangP. L. LiuFeng XueCui LiHua-bin LiM. QiJ. K. BeckerY. XuN. B. LiQ. J. LiQ ZhaoH. M. LiuM. PelizaeusH. YeG. S. VarnerY. ZhangYulei HanYuehong XieXing LuWei WuF. E. MaasJ. ZhongH. P. ChengX. Q. LiKunlun HeKai LiuYang GaoKa-yuet LiuN. WuY. Q. WangZhibing LiM. AblikimC. L. LuoP. L. WangA. A. ZafarW. B. YanL. L. JiangX. L. LuoFang LiuLei ZhouX. K. ZhouXueyong ShenZujian WangY. S. ZhangH. S. ZhaoZhi-jun SunX. P. XuT. HeldH. J. LuD. M. LiB. Y. ZhangY. H. ZhengI. B. NikolaevF. F. JingM. N. AchasovJ. X. ZuoZ. G. WangH. Y. ZhangGuangyu ZhaoR. E. MitchellJ. Y. ZhangJ. P. DaiJ. MinChunyan ZhuD. DedovichShaodan MaShouguang JinYi-fang ZhaoY. P. HuangW. GradlW. LaiY. K. HengJ. W. ZhangX. Q. HaoTao HuB. HuangZhiyong ZhangL. S. WangN. Kalantar-nayestanakiM. H. YeK. H. RashidX. LiuC. Morales MoralesH. Y. ShengS. SpataroM. GrecoU. WiednerY. P. LuG. R. LiaoD. TothS. J. ZhaoL. L. WangX. Y. ZhangM. H. YeM. L. ChenR. G. PingS. S. SunX. B. JiK. GoetzenZ. P. MaoX. H. ZhaoW. M. DingJ. FangJ. F. ChangG. F. CaoG. RongZ. A. LiuY. M. ZhuX. R. ZhouJ. L. FuCheng LiZ. J. XiaoB. ZhengY. J. SunWei LiQun-yao WangK. PetersA. ZalloL. G. XiaY. S. ZhuJ. F. QiuZ. WuH. L. TianC. J. TangK. X. ZhaoY. F. WangF. A. HarrisX. Y. MaChunmei ZhangC. H. Lisubject
PhysicsBranching fractionElectron–positron annihilationExcited stateAnalytical chemistryGeneral Physics and Astronomydescription
Using a sample of 106×10(6) ψ(3686) events collected with the BESIII detector at the BEPCII storage ring, we have made the first measurement of the M1 transition between the radially excited charmonium S-wave spin-triplet and the radially excited S-wave spin-singlet states: ψ(3686)→γη(c)(2S). Analyses of the processes ψ(3686)→γη(c)(2S) with η(c)(2S)→K(S)(0)K(±)π(∓) and K(+)K(-)π(0) give an η(c)(2S) signal with a statistical significance of greater than 10 standard deviations under a wide range of assumptions about the signal and background properties. The data are used to obtain measurements of the η(c)(2S) mass (M(η(c)(2S))=3637.6±2.9(stat)±1.6(syst) MeV/c(2)), width (Γ(η(c)(2S))=16.9±6.4(stat)±4.8(syst) MeV), and the product branching-fraction (B(ψ(3686)→γη(c)(2S))×B(η(c)(2S)→KKπ)=(1.30±0.20(stat)±0.30(syst))×10(-5)). Combining our result with a BABAR measurement of B(η(c)(2S)→KKπ), we find the branching fraction of the M1 transition to be B(ψ(3686)→γη(c)(2S))=(6.8±1.1(stat)±4.5(syst))×10(-4).
year | journal | country | edition | language |
---|---|---|---|---|
2012-07-24 | Physical Review Letters |