0000000000634856
AUTHOR
Yue Meng
Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress
Abstract The effects of uniaxial stress on the pressure-induced α → ω transition in pure titanium (Ti) are investigated by means of angle dispersive X-ray diffraction in a diamond-anvil cell. Experiments under four different pressure environments reveal that: (1) the onset of the transition depends on the pressure medium used, going from 4.9 GPa (no pressure medium) to 10.5 GPa (argon pressure medium); (2) the α and ω phases coexist over a rather large pressure range, which depends on the pressure medium employed; (3) the hysteresis and quenchability of the ω phase is affected by differences in the sample pressure environment; and (4) a short-term laser heating of Ti lowers the α → ω transi…
Calibration strategy of the JUNO experiment
We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. [Figure not available: see fulltext.]
Equation of state and high-pressure/high-temperature phase diagram of magnesium
The phase diagram of magnesium has been investigated to 211 GPa at 300 K, and to 105 GPa at 4500 K, by using a combination of x-ray diffraction and resistive and laser heating. The ambient pressure hcp structure is found to start transforming to the bcc structure at ∼45 GPa, with a large region of phase-coexistence that becomes smaller at higher temperatures. The bcc phase is stable to the highest pressures reached. The hcp-bcc phase boundary has been studied on both compression and decompression, and its slope is found to be negative and steeper than calculations have previously predicted. The laser-heating studies extend the melting curve of magnesium to 105 GPa and suggest that, at the h…
The Design and Sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS
The European physical journal / C 81(11), 973 (2021). doi:10.1140/epjc/s10052-021-09544-4
Optical and structural study of the pressure-induced phase transition of CdWO$_4$
Physical review / B 95(17), 174105 (2017). doi:10.1103/PhysRevB.95.174105
Radioactivity control strategy for the JUNO detector
JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration…
Polymorphism in Strontium Tungstate SrWO 4 under Quasi-Hydrostatic Compression
The structural and vibrational properties of SrWO4 have been studied experimentally up to 27 and 46 GPa, respectively, by angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy measurements as well as using ab initio calculations. The existence of four polymorphs upon quasi-hydrostatic compression is reported. The three phase transitions were found at 11.5, 19.0, and 39.5 GPa. The ambient-pressure SrWO4 tetragonal scheelite-type structure (S.G. I41/a) undergoes a transition to a monoclinic fergusonite-type structure (S.G. I2/a) at 11.5 GPa with a 1.5% volume decrease. Subsequently, at 19.0 GPa, another structural transformation takes place. Our calculations indicate two possi…
Quasi-hydrostatic X-ray powder diffraction study of the low- and high-pressure phases of CaWO4 up to 28 GPa
We have studied CaWO4 under compression using Ne as pressure-transmitting medium at room temperature by means of synchrotron X-ray powder diffraction. We have found that CaWO4 beyond 8.8 GPa transforms from its low-pressure tetragonal structure (scheelite) into a monoclinic structure (fergusonite). The high-pressure phase remains stable up to 28 GPa and the low-pressure phase is totally recovered after full decompression. The pressure dependence of the unit-cell parameters, as well as the pressure volume equation of state, has been determined for both phases. Compared with previous studies, we found in our quasi-hydrostatic experiments a different behavior for the unit-cell parameters of th…
High-pressure stability and compressibility ofAPO4(A=La, Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiation
Room-temperature angle-dispersive x-ray diffraction measurements on zircon-type ${\text{YPO}}_{4}$ and ${\text{ErPO}}_{4}$, and monazite-type ${\text{GdPO}}_{4}$, ${\text{EuPO}}_{4}$, ${\text{NdPO}}_{4}$, and ${\text{LaPO}}_{4}$ were performed in a diamond-anvil cell up to 30 GPa using neon as pressure-transmitting medium. In the zircon-structured oxides we found evidence of a reversible pressure-induced structural phase transformation from zircon to a monazite-type structure. The onset of the transition is at 19.7 GPa in ${\text{YPO}}_{4}$ and 17.3 GPa in ${\text{ErPO}}_{4}$. In ${\text{LaPO}}_{4}$ a nonreversible transition is found at 26.1 GPa and a barite-type structure is proposed for …
JUNO sensitivity to low energy atmospheric neutrino spectra
Atmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about cosmic rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric $\nu_e$ and $\nu_\mu$ fluxes is presented in this paper. In this study, a sample of atmospheric neutrino Monte Carlo events has been generated, starting from theoretical models, and then pro…
Pressure-induced phase transitions in AgClO4
11 pags, 9 figs, 4 tabs. -- PACS number(s): 62.50.−p, 64.70.K−, 61 .50.Ks, 64.30.−t
Complex high-pressure polymorphism of barium tungstate
We have studied BaWO 4 under compression at room temperature by means of x-ray diffraction and Raman spectroscopy. When compressed with neon as a pressure-transmitting medium (quasihydrostatic conditions), we found that BaWO 4 transforms from its low-pressure tetragonal structure into a much denser monoclinic structure. This result confirms our previous theoretical prediction based on ab initio calculations that the scheelite to BaWO 4-II transition occurs at room temperature if kinetic barriers are suppressed by pressure. However, our experiment without any pressure- transmitting medium has resulted in a phase transition to a completely different structure, suggesting nonhydrostaticity may…