0000000000634863

AUTHOR

Paolo Montini

showing 18 related works from this author

Nanoseconds Timing System Based on IEEE 1588 FPGA Implementation

2019

Clock synchronization procedures are mandatory in most physical experiments where event fragments are readout by spatially dislocated sensors and must be glued together to reconstruct key parameters (e.g. energy, interaction vertex etc.) of the process under investigation. These distributed data readout topologies rely on an accurate time information available at the frontend, where raw data are acquired and tagged with a precise timestamp prior to data buffering and central data collecting. This makes the network complexity and latency, between frontend and backend electronics, negligible within upper bounds imposed by the frontend data buffer capability. The proposed research work describ…

EthernetFOS: Computer and information sciencesNuclear and High Energy PhysicsEye diagram; field-programmable gate arrays (FPGAs); front-end electronics; hardware; synchronization; timing systemfront-end electronicEye diagramtiming systemSerial communicationData bufferNetwork topology01 natural sciencesClock synchronizationNOComputer Science - Networking and Internet ArchitecturePE2_20103 physical sciencesSynchronization (computer science)hardwareElectrical and Electronic EngineeringNetworking and Internet Architecture (cs.NI)010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica Sperimentalefront-end electronicsNuclear Energy and Engineeringfield-programmable gate arrays (FPGAs)Precision Time ProtocolbusinesssynchronizationComputer hardwareData link layer
researchProduct

Calibration of the RPC charge readout in the ARGO-YBJ experiment

2012

""The charge readout of Resistive Plate Chambers (RPCs) is implemented in the ARGO-YBJ experiment to measure the charged particle density of the shower front up to 10^4\\\/m^2, enabling the study of the primary cosmic rays with energies in the ''knee'' region. As the first time for RPCs being used this way, a telescope with RPCs and scintillation detectors is setup to calibrate the number of charged particles hitting a RPC versus its charge readout. Air shower particles are taken as the calibration beam. The telescope was tested at sea level and then moved to the ARGO-YBJ site for coincident operation with the ARGO-YBJ experiment. The charge readout shows good linearity with the particle de…

Optical telescopesNuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsCamere a Piastre Resistive (RPC)Resistive plate chamberAstrophysics::High Energy Astrophysical PhenomenaCosmic raylaw.inventionTelescopeSettore FIS/05 - Astronomia E AstrofisicaOpticslawCoincidentAir showersCalibrationSea levelInstrumentationParticle densitiesCosmic raysResistive Plate Chambers Charge read-out Extended Air ShowersPhysicsAir showers Charge readout Dynamic range Knee regions Particle densities Resistive plate chambers; Calibration Charged particles Cosmic rays Experiments Optical telescopes Sea level Telescopes; Particle spectrometersResistive touchscreenScintillationDynamic rangeCharge readoutParticle spectrometersbusiness.industryCharged particlesSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsCharged particleAir showerCalibrazione della Risposta Analogica di RPCKnee regionsLettura Analogica di RPCCalibrationResistive plate chambersbusinessExperimentsTelescopes
researchProduct

Calibration strategy of the JUNO experiment

2021

We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. [Figure not available: see fulltext.]

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsmeasurement methodsscintillation counter: liquidenergy resolutionFOS: Physical sciencesPhotodetectorScintillator53001 natural sciencesNOHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)hal-03022811PE2_2Optics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Calibrationlcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAstrophysiqueJiangmen Underground Neutrino ObservatoryPhysicsJUNOliquid [scintillation counter]010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsLinearityInstrumentation and Detectors (physics.ins-det)calibrationNeutrino Detectors and Telescopes (experiments)lcsh:QC770-798High Energy Physics::ExperimentNeutrinobusinessEnergy (signal processing)Journal of High Energy Physics
researchProduct

The Design and Sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS

2021

The European physical journal / C 81(11), 973 (2021). doi:10.1140/epjc/s10052-021-09544-4

Liquid scintillatorPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and Detectorsscintillation counter: liquidmeasurement methodsQC770-798Astrophysics01 natural sciencesthorium: nuclidedesign [detector]neutrinoRadioactive purityPhysicsLow energy neutrinoJUNOliquid [scintillation counter]biologySettore FIS/01 - Fisica SperimentaleDetectorInstrumentation and Detectors (physics.ins-det)3. Good healthQB460-466Physics::Space Physicsnuclide [uranium]FOS: Physical sciencesScintillatornuclide [thorium]530NONuclear physicsPE2_2uranium: nuclideNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesddc:530Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsJUNO neutrino physics liquid scintillatorEngineering (miscellaneous)background: radioactivitydetector: designMeasurement method010308 nuclear & particles physicsradioactivity [background]biology.organism_classificationsensitivityHigh Energy Physics::ExperimentReactor neutrinoOsiris
researchProduct

Radioactivity control strategy for the JUNO detector

2021

JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsNuclear engineeringMonte Carlo methodControl (management)measurement methodsFOS: Physical sciencesQC770-798Scintillator7. Clean energy01 natural sciencesNOPE2_2Nuclear and particle physics. Atomic energy. Radioactivity0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Sensitivity (control systems)010306 general physicsPhysicsJUNOliquid [scintillation counter]010308 nuclear & particles physicsbusiness.industryDetectorSettore FIS/01 - Fisica Sperimentaleradioactivity [background]suppression [background]Instrumentation and Detectors (physics.ins-det)Monte Carlo [numerical calculations]Nuclear powerthreshold [energy]sensitivityNeutrino Detectors and Telescopes (experiments)GEANTNeutrinobusinessEnergy (signal processing)
researchProduct

Light-component spectrum of the primary cosmic rays in the multi-TeV region measured by the ARGO-YBJ experiment

2012

The ARGO-YBJ experiment detects extensive air showers in a wide energy range by means of a full-coverage detector which is in stable data taking in its full configuration since November 2007 at the YBJ International Cosmic Ray Observatory (4300 m a.s.l., Tibet, People's Republic of China). In this paper the measurement of the light-component spectrum of primary cosmic rays in the energy region $(5\textdiv{}200)\text{ }\text{ }\mathrm{TeV}$ is reported. The method exploited to analyze the experimental data is based on a Bayesian procedure. The measured intensities of the light component are consistent with the recent CREAM results and higher than that obtained adding the proton and helium sp…

Extended Air Showers Cosmic Rays Gamma Ray sourcesNuclear and High Energy PhysicsProtonTIBETAstrophysics::High Energy Astrophysical PhenomenaExtensive air showerchemistry.chemical_elementCosmic rayHELIUM SPECTRAAstrophysicsPROTONBayesian methodCASCADESSpectral lineSettore FIS/05 - Astronomia E AstrofisicaNuclear magnetic resonanceCosmic-ray observatoryHeliumPhysicsRange (particle radiation)ENERGY-RANGEBALLOON EXPERIMENTNUCLEISettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for Astrophysicslight component spectrumchemistryEnergy (signal processing)SYSTEM
researchProduct

Mean Interplanetary Magnetic Field Measurement Using the ARGO-YBJ Experiment

2011

The sun blocks cosmic ray particles from outside the solar system, forming a detectable shadow in the sky map of cosmic rays detected by the ARGO-YBJ experiment in Tibet. Because the cosmic ray particles are positive charged, the magnetic field between the sun and the earth deflects them from straight trajectories and results in a shift of the shadow from the true location of the sun. Here we show that the shift measures the intensity of the field which is transported by the solar wind from the sun to the earth.

Solar SystemField (physics)media_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesmagnetic fieldCosmic rayHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Settore FIS/05 - Astronomia E AstrofisicaShadowAstrophysics::Solar and Stellar AstrophysicsInterplanetary magnetic fieldcosmic raySolar and Stellar Astrophysics (astro-ph.SR)media_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsCosmic Rays Gamma Sources Extended Air Showers Solar windMagnetic fieldSolar windAstrophysics - Solar and Stellar Astrophysicssolar windSpace and Planetary ScienceSkyPhysics::Space PhysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Early warning for VHE gamma-ray flares with the ARGO-YBJ detector

2011

Detecting and monitoring emissions from flaring gamma-ray sources in the very-high-energy (VHE, > 100 GeV) band is a very important topic in gamma-ray astronomy. The ARGO-YBJ detector is characterized by a high duty cycle and a wide field of view. Therefore, it is particularly capable of detecting flares from extragalactic objects. Based on fast reconstruction and analysis, real-time monitoring of 33 selected VHE extragalactic sources is implemented. Flares exceeding a specific threshold are reported timely, hence enabling the follow-up observation of these objects using more sensitive detectors, such as Cherenkov telescopes. (C) 2011 Elsevier B.V. All rights reserved.

Wide field of viewNuclear and High Energy PhysicsMonitoringAstrophysics::High Energy Astrophysical PhenomenaARGO-YBJFlaring phenomenonVHE extragalactic sourceAstrophysicsSettore FIS/05 - Astronomia E AstrofisicaInstrumentationSorgenti VHE extragalatticheArgoCherenkov radiationPhysicsFenomeni transientiWarning systemDetectorSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsGamma rayMonitoring Flaring PhenomenonAstronomyWide fieldDuty cycleAmpio campo di vistaFlaring phenomena VHE extragalactic sources Gamma Ray Bursts Large Field of view telescope ARGO-YBJGamma-ray burst
researchProduct

Observation of TeV gamma rays from the Cygnus region with the ARGO-YBJ experiment

2012

We report the observation of TeV gamma-rays from the Cygnus region using the ARGO-YBJ data collected from 2007 November to 2011 August. Several TeV sources are located in this region including the two bright extended MGRO J2019+37 and MGRO J2031+41. According to the Milagro data set, at 20 TeV MGRO J2019+37 is the most significant source apart from the Crab Nebula. No signal from MGRO J2019+37 is detected by the ARGO-YBJ experiment, and the derived flux upper limits at 90% confidence level for all the events above 600 GeV with medium energy of 3 TeV are lower than the Milagro flux, implying that the source might be variable and hard to be identified as a pulsar wind nebula. The only statist…

Astrophysics::High Energy Astrophysical Phenomenageneral – pulsars: individual (MGRO J2019+37 [Gamma rays]FluxFOS: Physical sciencesAstrophysics01 natural sciencesPulsar wind nebulageneral – pulsar0103 physical sciencesMILAGRO010303 astronomy & astrophysicsDETECTORArgoPhysicsCALIBRATIONHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsMGRO J2031+41)Settore FIS/01 - Fisica SperimentaleGamma rayAstronomy and Astrophysicsindividual (MGRO J2019+37 MGRO J2031+41)PLANE3. Good healthMedium energyCrab Nebulagamma ray13. Climate actionSpace and Planetary ScienceGALACTIC SOURCESJ2032+4130Milagrogamma rays; general – pulsars; individual (MGRO J2019+37 MGRO J2031+41)EMISSIONAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Energy spectrum of cosmic protons and helium nuclei by a hybrid measurement at 4300 m a.s.l.

2014

The energy spectrum of cosmic Hydrogen and Helium nuclei has been measured, below the so-called "knee", by using a hybrid experiment with a wide field-of-view Cherenkov telescope and the Resistive Plate Chamber (RPC) array of the ARGO-YBJ experiment at 4300 m above sea level. The Hydrogen and Helium nuclei have been well separated from other cosmic ray components by using a multi-parameter technique. A highly uniform energy resolution of about 25% is achieved throughout the whole energy range (100 TeV - 700 TeV). The observed energy spectrum is compatible with a single power law with index gamma=-2.63+/-0.06.

Nuclear and High Energy PhysicsHydrogenAstrophysics::High Energy Astrophysical PhenomenaARGO-YBJFOS: Physical scienceschemistry.chemical_elementCosmic rayHigh Energy Physics - Experimentlaw.inventionNuclear physicsTelescopeHigh Energy Physics - Experiment (hep-ex)lawInstrumentationCherenkov radiationHeliumHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsRange (particle radiation)COSMIC cancer databaseSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsHybrid measurementAstronomy and AstrophysicsAlpha particlechemistryCherenkov telescopeEnergy SpectrumAstrophysics - High Energy Astrophysical PhenomenaComposition
researchProduct

ARGO-YBJ constraints on very high energy emission from GRBs

2009

The ARGO-YBJ (Astrophysical Radiation Ground-based Observatory at YangBaJing) experiment is designed for very high energy $\gamma$-astronomy and cosmic ray researches. Due to the full coverage of a large area ($5600 m^2$) with resistive plate chambers at a very high altitude (4300 m a.s.l.), the ARGO-YBJ detector is used to search for transient phenomena, such as Gamma-ray bursts (GRBs). Because the ARGO-YBJ detector has a large field of view ($\sim$2 sr) and is operated with a high duty cycle ($>$90%), it is well suited for GRB surveying and can be operated in searches for high energy GRBs following alarms set by satellite-borne observations at lower energies. In this paper, the sensitivit…

Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaSettore FIS/01 - Fisica SperimentaleDetectorGamma rayAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsCosmic rayField of viewAstrophysicsRadiation7. Clean energy01 natural sciencesSettore FIS/05 - Astronomia e Astrofisica13. Climate actionDuty cycleObservatory0103 physical sciencesGAMMA RAY BURSTS GAMMA RAYS COSMIC RAYS EXTENDED AIR SHOWERSGamma-ray burstAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics
researchProduct

JUNO sensitivity to low energy atmospheric neutrino spectra

2021

Atmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about cosmic rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric $\nu_e$ and $\nu_\mu$ fluxes is presented in this paper. In this study, a sample of atmospheric neutrino Monte Carlo events has been generated, starting from theoretical models, and then pro…

Physics and Astronomy (miscellaneous)Physics::Instrumentation and Detectorsscintillation counter: liquidenergy resolutionAtmospheric neutrinoQC770-798Astrophysics7. Clean energy01 natural sciencesneutrino: fluxHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)particle source [neutrino]neutrinoneutrino: atmosphere[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Cherenkovneutrino/e: particle identificationenergy: low [neutrino]Jiangmen Underground Neutrino ObservatoryPhysicsJUNOphotomultiplierliquid [scintillation counter]primary [neutrino]neutrino: energy spectrumDetectoroscillation [neutrino]neutrinosMonte Carlo [numerical calculations]atmosphere [neutrino]QB460-466observatorycosmic radiationComputer Science::Mathematical Softwareproposed experimentNeutrinonumerical calculations: Monte CarloComputer Science::Machine LearningParticle physicsdata analysis methodAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayScintillatorComputer Science::Digital LibrariesNOStatistics::Machine LearningPE2_2neutrino: primaryneutrino: spectrumNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesddc:530structure010306 general physicsNeutrino oscillationEngineering (miscellaneous)Cherenkov radiationparticle identification [neutrino/mu]Scintillationneutrino/mu: particle identificationflavordetectorparticle identification [neutrino/e]010308 nuclear & particles physicsneutrino: energy: lowHigh Energy Physics::Phenomenologyspectrum [neutrino]resolutionenergy spectrum [neutrino]flux [neutrino]neutrino: particle source13. Climate actionHigh Energy Physics::Experimentneutrino: oscillationneutrino detector
researchProduct

Highlights from the ARGO-YBJ Experiment

2012

""The ARGO-YBJ experiment at YangBaJing in Tibet (4300m a.s.l.) has been taking data with its full layout since October 2007. Here we present a few significant results obtained in gamma-ray astronomy and cosmic-ray physics. Emphasis is placed on the analysis of gamma-ray emission from point-like sources (Crab Nebula, MRK 421), on the preliminary limit on the antiproton\\\/proton flux ratio, on the large-scale cosmic-ray anisotropy and on the proton-air cross-section. The performance of the detector is also discussed, and the perspectives of the experiment are outlined.""

HistoryAstronomyFluxAstrophysicsProton flux01 natural sciencesArgo-YbjGamma-ray emissionSettore FIS/05 - Astronomia E AstrofisicaCosmic-ray physicsResistive Plate ChambersInstrumentation010303 astronomy & astrophysicsArgoPhysicsRange (particle radiation)DetectorSettore FIS/01 - Fisica SperimentaleCrab nebulaAstrophysics::Instrumentation and Methods for AstrophysicsGamma rayCrab nebula Extensive air showers Flux ratio Gamma-ray astronomy Gamma-ray emission Ground based Resistive plate chambers; Astronomy Cosmic rays Cosmology Experiments; Gamma raysFlux ratioCosmologyComputer Science ApplicationsResistive plate chambersNuclear and High Energy PhysicsX- and γ-ray instrumentGround-based gamma-ray astronomyAstrophysics::High Energy Astrophysical PhenomenaExtensive air showerCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsCosmic RayEducationResistive Plate Chambers Extensive air showers Ground-based g ray astronomy Cosmic-ray physicsGround-based γ-ray astronomy0103 physical sciencesExtensive air showersCosmic raysExtensive air showers X- and γ-ray instruments Pulsars. Quasars active or peculiar galaxies objects and systemsAstrophysics::Galaxy AstrophysicsGamma-ray astronomy010308 nuclear & particles physicsGamma raysAstronomyResistive Plate ChamberGround basedCrab NebulaAntiprotonResistive Plate Chambers; Extensive air showers; Ground-based γ-ray astronomy; Cosmic-ray physicsSatelliteGamma-ray burstExperimentsJournal of Physics: Conference Series
researchProduct

Measurement of the cosmic ray antiproton/proton flux ratio at TeV energies with the ARGO-YBJ detector

2012

Cosmic ray antiprotons provide an important probe to study the cosmic ray propagation in the interstellar space and to investigate the existence of dark matter. Acting the Earth-Moon system as a magnetic spectrometer, paths of primary antiprotons are deflected in the opposite sense with respect to those of the protons in their way to the Earth. This effect allows, in principle, the search for antiparticles in the direction opposite to the observed deficit of cosmic rays due to the Moon (the so-called `Moon shadow'). The ARGO-YBJ experiment, located at the Yangbajing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm$^2$), is particularly effective in measuring the cosmic ray …

PhysicsNuclear and High Energy PhysicsAntiparticleAstrophysics::High Energy Astrophysical PhenomenaDark matterSettore FIS/01 - Fisica SperimentaleEarth-MoonCosmic raymagnetic spectrometerCosmic rayHigh Energy Physics - ExperimentNuclear physicsEarth's magnetic fieldAntiprotonAntimatterantiprotonContent (measure theory)Antiproton-Proton ratio Cosmic rays Extended Air ShowersAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)
researchProduct

Proton-air cross section measurement with the ARGO-YBJ cosmic ray experiment

2009

The proton-air cross section in the energy range 1-100 TeV has been measured by the ARGO-YBJ cosmic ray experiment. The analysis is based on the flux attenuation for different atmospheric depths (i.e. zenith angles) and exploits the detector capabilities of selecting the shower development stage by means of hit multiplicity, density and lateral profile measurements at ground. The effects of shower fluctuations, the contribution of heavier primaries and the uncertainties of the hadronic interaction models, have been taken into account. The results have been used to estimate the total proton-proton cross section at center of mass energies between 70 and 500 GeV, where no accelerator data are …

Nuclear and High Energy PhysicsCosmic rays Proton-air cross section gamma astronomyProtonAstrophysics::High Energy Astrophysical PhenomenaHadronCosmic rayCross Section01 natural sciencesCosmic RayHigh Energy Physics - ExperimentNuclear physics0103 physical sciencesMultiplicity (chemistry)010306 general physicsNuclear ExperimentZenithArgoPhysics010308 nuclear & particles physicsAttenuationDetectorSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysics3. Good healthHadronic InteractionHigh Energy Physics::ExperimentExtensive Air Showers
researchProduct

Temperature effect on RPC performance in the ARGO-YBJ experiment

2009

The ARGO-YBJ experiment has been taking data for nearly 2 years. In order to monitor continuously the performance of the Resistive Plate Chamber detectors and to study the daily temperature effects on the detector performance, a cosmic ray muon telescope was setup near the carpet detector array in the ARGO-YBJ laboratory. Based on the measurements performed using this telescope, it is found that, at the actual operating voltage of 7.2kV, the temperature effect on the RPC time resolution is about 0.04ns/degrees C and on the particle detection efficiency is about 0.03%/degrees C. Based on these figures we conclude that the environmental effects do not affect substantially the angular resoluti…

Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaCosmic rayEfficiencytelescopelaw.inventionTelescopeOpticslawAngular resolutionOperating voltagetime resolutionInstrumentationArgoPhysicsMuonbusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsTime resolutionTime resolutionCosmic Ray TelescopeefficiencyRPCHigh Energy Physics::Experimentbusiness
researchProduct

Intrinsic linearity of bakelite Resistive Plate Chambers operated in streamer mode

2019

Abstract Resistive Plate Chambers have largely been used in High Energy Physics and Cosmic Ray research. In view of using this detector for calorimetry applications it is important to know the maximum measurable particle density, or its intrinsic linearity limit, which is tightly related to the dimension of the discharge region. In this paper we report the results of measurements performed at the Beam Test Facility (INFN National Laboratory of Frascati, Italy) where the intrinsic linearity of bakelite RPCs operated in streamer mode has been tested at different impinging particle densities.

Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsIntrinsic linearityStreamer modeCosmic rayCalorimetry01 natural scienceschemistry.chemical_compoundOptics0103 physical sciencesBakeliteParticle density010303 astronomy & astrophysicsInstrumentationPhysicsResistive touchscreen010308 nuclear & particles physicsbusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleLinearityRPC detector Streamer mode Intrinsic linearity CalorimetrychemistryParticlePhysics::Accelerator PhysicsRPC detectorCalorimetry; Intrinsic linearity; RPC detector; Streamer modebusinessBeam (structure)
researchProduct

Distillation and stripping pilot plants for the JUNO neutrino detector: Design, operations and reliability

2019

Abstract This paper describes the design, construction principles and operations of the distillation and stripping pilot plants tested at the Daya Bay Neutrino Laboratory, with the perspective to adapt these processes, system cleanliness and leak-tightness standards to the final full scale plants to be used for the purification of the liquid scintillator of the JUNO neutrino detector. The main goal of these plants is to remove radio impurities from the liquid scintillator while increasing its optical attenuation length. Purification of liquid scintillator will be performed with a system combining alumina oxide, distillation, water extraction and steam (or N 2 gas) stripping. Such a combined…

Large-scale experimentNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsLiquid scintillatorAttenuation length; LAB; Large-scale experiments; Light yield; Liquid scintillator; Nitrogen purging; Radiopurity; Scintillator transparency; Nuclear and High Energy Physics; Instrumentationscintillation counter: liquidMixing (process engineering)Full scaleFOS: Physical sciencesRadiopurityfabricationScintillator01 natural sciences7. Clean energyStripping (fiber)law.inventionNOlaw0103 physical sciencesthorium: admixtureAttenuation length; LAB; Large-scale experiments; Light yield; Liquid scintillator; Nitrogen purging; Radiopurity; Scintillator transparency[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsProcess engineeringDistillationInstrumentationbackground: radioactivityNuclear and High Energy PhysicPhysicsLABJUNOLarge-scale experiments010308 nuclear & particles physicsbusiness.industryuranium: admixtureSettore FIS/01 - Fisica SperimentaleAttenuation lengthInstrumentation and Detectors (physics.ins-det)Attenuation lengthNitrogen purgingNeutrino detectorScintillator transparencyNeutrinobusinessaluminum: oxygenLight yield
researchProduct